Seq2 = di.loadSequence('P0') testSeqs = [Seq2] # di = ICVLImporter('../data/ICVL/') # Seq2 = di.loadSequence('test_seq_1') # testSeqs = [Seq2] #di = NYUImporter('../data/NYU/') #Seq2 = di.loadSequence('test_1') #testSeqs = [Seq2] # load trained network poseNetParams = ResNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, numJoints=14, nDims=3) poseNetParams.loadFile = "/content/deep-prior-pp/src/eval/MSRA_network_prior_0.pkl" comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNetParams.loadFile = "/content/deep-prior-pp/src/eval/net_MSRA15_COM_AUGMENT.pkl" config = {'fx': 588., 'fy': 587., 'cube': (300, 300, 300)} # config = {'fx': 241.42, 'fy': 241.42, 'cube': (250, 250, 250)} # config = {'fx': 224.5, 'fy': 230.5, 'cube': (300, 300, 300)} # Creative Gesture Camera rtp = RealtimeHandposePipeline(poseNetParams, config, di, verbose=False, comrefNet=comrefNetParams) # use filenames filenames = [] for i in testSeqs[0].data: filenames.append(i.fileName) dev = FileDevice(filenames, di) # use depth camera # dev = CreativeCameraDevice(mirror=True) rtp.processVideoThreaded(dev)
nChan=1, wIn=128, hIn=128, batchSize=1, numJoints=14, nDims=3) poseNetParams.loadFile = "./eval/NYU_network_prior.pkl" comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=128, hIn=128, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNetParams.loadFile = "./eval/net_NYU_COM_AUGMENT.pkl" config = {'fx': 588., 'fy': 587., 'cube': (300, 300, 300)} # config = {'fx': 241.42, 'fy': 241.42, 'cube': (250, 250, 250)} # config = {'fx': 224.5, 'fy': 230.5, 'cube': (300, 300, 300)} # Creative Gesture Camera rtp = RealtimeHandposePipeline(poseNetParams, config, di, verbose=False, comrefNet=comrefNetParams) # use filenames filenames = [] for i in testSeqs[0].data: filenames.append(i.fileName) dev = FileDevice(filenames, di)
dsize = (int(train_data.shape[2] // 4), int(train_data.shape[3] // 4)) xstart = int(train_data.shape[2] / 2 - dsize[0] / 2) xend = xstart + dsize[0] ystart = int(train_data.shape[3] / 2 - dsize[1] / 2) yend = ystart + dsize[1] train_data4 = train_data[:, :, ystart:yend, xstart:xend] comrefNetParams = ScaleNetParams(type=1, nChan=1, wIn=96, hIn=96, batchSize=1, resizeFactor=2, numJoints=1, nDims=3) comrefNetParams.loadFile = "../../ptm/net_MSRA15_COM_AUGMENT.pkl" poseNet = ScaleNet(numpy.random.RandomState(23455), cfgParams=comrefNetParams) train_data = numpy.ndarray.astype(train_data, dtype='float64') train_data2 = numpy.ndarray.astype(train_data2, dtype='float64') train_data4 = numpy.ndarray.astype(train_data4, dtype='float64') #Seq_all list of sequence data gt3D = [] for i in xrange(len(Seq_all)): gt3D_temp = [ j.gt3Dorig[di.crop_joint_idx].reshape(1, 3) for j in Seq_all[i].data ] gt3D.extend(gt3D_temp) jts = poseNet.computeOutput([train_data, train_data2, train_data4]) joints = [] for i in xrange(train_data.shape[0]): joints.append(jts[i].reshape(1, 3) * (Seq_all[0].config['cube'][2] / 2.) +