temporal_patterns = temporal_patterns_full.copy()
            for idx in range(run + args.n_cells[4],
                             temporal_patterns.shape[0]):
                temporal_patterns[idx] = np.array([])
            for idx in range(0, run):
                temporal_patterns[idx] = np.array([])

            nw = net_tunedrevexpdrives.TunedNetwork(
                seed=args.seed + run,
                n_gcs=args.n_cells[0],
                n_mcs=args.n_cells[1],
                n_bcs=args.n_cells[2],
                n_hcs=args.n_cells[3],
                W_pp_gc=args.W_pp_gc,
                W_pp_bc=ff_weight,
                n_pp_gc=args.n_pp_gc,
                n_pp_bc=args.n_pp_bc,
                W_gc_bc=fb_weight,
                W_gc_hc=fb_weight,
                W_bc_gc=args.W_bc_gc,
                W_hc_gc=args.W_hc_gc,
                ff_t_offset=args.t_pp_to_bc_offset,
                temporal_patterns=temporal_patterns,
                rec_cond=bool(args.rec_cond))
            # Run the model
            """Initialization for -2000 to -100"""
            h.cvode.active(0)
            dt = 0.1
            h.steps_per_ms = 1.0 / dt
            h.finitialize(-60)
            h.t = -2000
# Generate the PP -> BC mapping as above
innervation_pattern_bc = np.array(
    [np.random.choice(400, 20, replace=False) for x in range(24)])
innervation_pattern_bc = innervation_pattern_bc.swapaxes(0, 1)

PP_to_BCs = []
for x in range(0, 400):
    PP_to_BCs.append(np.argwhere(innervation_pattern_bc == x)[:, 1])

PP_to_BCs = np.array(PP_to_BCs)
all_targets = np.array([y for x in PP_to_GCs for y in x])

# Start the runs of the model
for run in runs:
    nw = net_tunedrevexpdrives.TunedNetwork(
        10000, temporal_patterns[0 + run:24 + run],
        PP_to_GCs[0 + run:24 + run], PP_to_BCs[0 + run:24 + run])

    # Attach voltage recordings to all cells
    nw.populations[0].voltage_recording(range(2000))
    nw.populations[1].voltage_recording(range(60))
    nw.populations[2].voltage_recording(range(24))
    nw.populations[3].voltage_recording(range(24))
    # Run the model
    """Initialization for -2000 to -100"""
    h.cvode.active(0)
    dt = 0.1
    h.steps_per_ms = 1.0 / dt
    h.finitialize(-60)
    h.t = -2000
    h.secondorder = 0