import netdef_slim as nd import os schedule = nd.FixedStepSchedule('S_custom', max_iter=200000, steps=[50000, 90000, 150000], base_lr=1e-05) nd.evo_manager.set_training_dir( os.path.join(os.path.dirname(__file__), 'training')) nd.add_evo(nd.Evolution('kitti.train', [], schedule))
import netdef_slim as nd import os nd.evo_manager.set_training_dir(os.path.join(os.path.dirname(__file__), 'training')) nd.add_evo(nd.Evolution('SDMixture_no_hom', [], 'S_refinement'))
import netdef_slim as nd import os import json from collections import namedtuple from model_genotype import model_func from netdef_slim.schedules.named_schedule import NamedSchedule nd.evo_manager.set_training_dir( os.path.join(os.path.dirname(__file__), 'training')) # add evolution max_steps = 150000 evo = nd.Evolution('FT3D', [], NamedSchedule('genotype', max_steps)) nd.add_evo(evo) nd.config['model_fn'] = model_func nd.config['num_gpus'] = 1 nd.config['test_batch_size'] = 1 nd.config['no_bn'] = True Genotype = namedtuple('Genotype', 'normal reduce upsample') genotype = Genotype(normal=[('skip_connect', 0), ('sep_conv_5x5', 1), ('sep_conv_3x3', 2), ('skip_connect', 0), ('dil_conv_3x3', 2), ('dil_conv_3x3', 0)], reduce=[('sep_conv_5x5', 1), ('sep_conv_3x3', 0), ('sep_conv_5x5', 2), ('skip_connect', 0), ('skip_connect', 1), ('sep_conv_5x5', 3)], upsample=[('sep_conv_3x3', 3), ('dil_conv_3x3', 2), ('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 3), ('sep_conv_3x3', 4),
import netdef_slim as nd import os nd.evo_manager.set_training_dir( os.path.join(os.path.dirname(__file__), 'training')) nd.add_evo( nd.Evolution('flyingThings3D.train', ['flyingThings3D.test'], 'S_short'))
import netdef_slim as nd import os nd.evo_manager.set_training_dir(os.path.join(os.path.dirname(__file__), 'training')) schedule = nd.FixedStepSchedule('S_custom', max_iter=200000, steps=[50000, 150000], base_lr=1e-05) nd.add_evo(nd.Evolution('kitti_sceneflow_ft', [], schedule))
import netdef_slim as nd import os nd.evo_manager.set_training_dir( os.path.join(os.path.dirname(__file__), 'training')) schedule = nd.FixedStepSchedule('S_custom', max_iter=250000, steps=[5000, 10000, 20000], base_lr=1e-05) nd.add_evo(nd.Evolution('sintel_mixture', [], schedule))
import netdef_slim as nd import os nd.evo_manager.set_training_dir( os.path.join(os.path.dirname(__file__), 'training')) nd.add_evo( nd.Evolution('flyingThings3D.train', ['flyingThings3D.test'], 'S_fine_half'))
import netdef_slim as nd import os nd.evo_manager.set_training_dir( os.path.join(os.path.dirname(__file__), 'training')) nd.add_evo(nd.Evolution('kitti.all.train', ['kitti.all.val'], 'S_short'))