def make_upfn(args, dataset, model, layername): '''Creates an upsampling function.''' convs, data_shape = None, None if args.model == 'alexnet': convs = [layer for name, layer in model.model.named_children() if name.startswith('conv') or name.startswith('pool')] elif args.model == 'progan': # Probe the data shape out = model(dataset[0][0][None,...].cuda()) data_shape = model.retained_layer(layername).shape[2:] upfn = upsample.upsampler( (64, 64), data_shape=data_shape, image_size=out.shape[2:]) return upfn else: # Probe the data shape _ = model(dataset[0][0][None,...].cuda()) data_shape = model.retained_layer(layername).shape[2:] pbar.print('upsampling from data_shape', tuple(data_shape)) upfn = upsample.upsampler( (56, 56), data_shape=data_shape, source=dataset, convolutions=convs) return upfn
def __init__(self, size, image_size=None, data_size=None, renormalizer=None, scale_offset=None, level=None, actrange=None, source=None, convolutions=None, quantiles=None, percent_level=None): if image_size is None and source is not None: image_size = upsample.image_size_from_source(source) if renormalizer is None and source is not None: renormalizer = renormalize.renormalizer(source=source, mode='byte') if scale_offset is None and convolutions is not None: scale_offset = upsample.sequence_scale_offset(convolutions) if data_size is None and convolutions is not None: data_size = upsample.sequence_data_size(convolutions, image_size) if level is None and quantiles is not None: level = quantiles.quantiles([percent_level or 0.95])[:,0] if actrange is None and quantiles is not None: actrange = quantiles.quantiles([0.01, 0.99]) if isinstance(size, int): size = (size, size) self.size = size self.image_size = image_size self.data_size = data_size self.renormalizer = renormalizer self.scale_offset = scale_offset self.percent_level = percent_level self.level = level self.actrange = actrange self.quantiles = quantiles self.upsampler = None if self.data_size is not None: self.upsampler = upsample.upsampler(size, data_size, image_size=self.image_size, scale_offset=scale_offset)
def upsampler_for(self, a): if self.upsampler is not None: return self.upsampler return upsample.upsampler(self.size, a.shape, image_size=self.image_size, scale_offset=self.scale_offset, dtype=a.dtype, device=a.device)
def make_upfn_without_hooks(args, dataset, layername, layers_output): convs = None data_HW_size = layers_output[layername].shape[2:] pbar.print('upsampling from data_shape', tuple(data_HW_size)) upfn = upsample.upsampler( (56, 56), data_shape=data_HW_size, source=dataset, convolutions=convs) return upfn
def __init__(self, model, dataset, dataset_path, model_layer, seglabels=None, segcatlabels=None, model_nm=None): model = nethook.InstrumentedModel(model) model.cuda() model.eval() self.model = model self.layername = model_layer self.model.retain_layer(self.layername) self.model_name = model_nm self.topk = None self.unit_images = None self.iou99 = None self.upfn = upsample.upsampler( target_shape=(56, 56), data_shape=(7, 7), ) if dataset == 'nih_seg': if seglabels is not None: self.seglabels = seglabels else: self.seglabels = [ 'No Class', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltrate', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural_Thickening', 'Hernia' ] if segcatlabels is not None: self.segcatlabels = segcatlabels else: self.segcatlabels = [('No Class', 'No Class'), ('Atelectasis', 'Atelectasis'), ('Cardiomegaly', 'Cardiomegaly'), ('Effusion', 'Effusion'), ('Infiltrate', 'Infiltrate'), ('Mass', 'Mass'), ('Nodule', 'Nodule'), ('Pneumonia', 'Pneumonia'), ('Pneumothorax', 'Pneumothorax'), ('Consolidation', 'Consolidation'), ('Edema', 'Edema'), ('Emphysema', 'Emphysema'), ('Fibrosis', 'Fibrosis'), ('Pleural_Thickening', 'Pleural_Thickening'), ('Hernia', 'Hernia')] if model_nm == 'chexpert_noweights': batch_sz = 10 else: batch_sz = 20 config = {'batch_size': batch_sz, 'input_size': (224, 224)} # Creating the dataloaders _, _, self.ds_loader = get_nih_segmented_dataloaders( dataset_path, **config) self.ds = self.ds_loader.dataset # Setting sample size self.sample_size = 100 self.rq = self._get_rq_vals() self.iv = imgviz.ImageVisualizer(224, source=self.ds, percent_level=0.99, quantiles=self.rq)
def __init__(self, model, dataset, dataset_path, model_layer, seglabels=None, segcatlabels=None): model = nethook.InstrumentedModel(model) model.cuda() model.eval() self.model = model self.layername = model_layer self.model.retain_layer(self.layername) self.topk = None self.unit_images = None self.iou99 = None self.upfn = upsample.upsampler( target_shape=(56, 56), data_shape=(7, 7), ) if dataset == 'covid_seg': self.seglabels = [ 'No class', 'Left Lung', 'Right Lung', 'Cardiomediastinum', 'Airways', 'Ground Glass Opacities', 'Consolidation', 'Pleural Effusion', 'Pneumothorax', 'Endotracheal Tube', 'Central Venous Line', 'Monitoring Probes', 'Nosogastric Tube', 'Chest tube', 'Tubings' ] self.segcatlabels = [ ('No class', 'No class'), ('Left Lung', 'Left Lung'), ('Right Lung', 'Right Lung'), ('Cardiomediastinum', 'Cardiomediastinum'), ('Airways', 'Airways'), ('Ground Glass Opacities', 'Ground Glass Opacities'), ('Consolidation', 'Consolidation'), ('Pleural Effusion', 'Pleural Effusion'), ('Pneumothorax', 'Pneumothorax'), ('Endotracheal Tube', 'Endotracheal Tube'), ('Central Venous Line', 'Central Venous Line'), ('Monitoring Probes', 'Monitoring Probes'), ('Nosogastric Tube', 'Nosogastric Tube'), ('Chest tube', 'Chest tube'), ('Tubings', 'Tubings') ] config = { 'batch_size': 1, 'input_size': (224, 224), } # Creating the dataloaders self.ds_loader = get_segmentation_dataloader( dataset_path, **config) self.ds = self.ds_loader.dataset # Specify the sample size in case of bigger dataset. Default is 100 for covid seg self.sample_size = 100 self.rq = self._get_rq_vals() self.iv = imgviz.ImageVisualizer(224, source=self.ds, percent_level=0.99, quantiles=self.rq)
for layername in layers: #if os.path.isfile(os.path.join(qd.dir(layername), 'intersect_99.npz')): # continue busy_fn = os.path.join(qd.dir(layername), 'busy.txt') if os.path.isfile(busy_fn): print(busy_fn) continue with open(busy_fn, 'w') as f: f.write('busy') print('working on', layername) inst_net = nethook.InstrumentedModel(copy.deepcopy(net)).cuda() inst_net.retain_layer('features.' + layername) inst_net(ds[0][0][None].cuda()) sample_act = inst_net.retained_layer('features.' + layername).cpu() upfn = upsample.upsampler((64, 64), sample_act.shape[2:]) def flat_acts(batch): inst_net(batch.cuda()) acts = upfn(inst_net.retained_layer('features.' + layername)) return acts.permute(0, 2, 3, 1).contiguous().view(-1, acts.shape[1]) s_rq = tally.tally_quantile(flat_acts, sds, cachefile=os.path.join(qd.dir(layername), 's_rq.npz')) u_rq = qd.rq(layername) def intersect_99_fn(uimg, simg): s_99 = s_rq.quantiles(0.99)[None, :, None, None].cuda() u_99 = u_rq.quantiles(0.99)[None, :, None, None].cuda()
dataset = parallelfolder.ParallelImageFolders( ['dataset/places/val'], transform=[center_crop], classification=True, shuffle=True) train_dataset = parallelfolder.ParallelImageFolders( ['dataset/places/train'], transform=[center_crop], classification=True, shuffle=True) # Collect unconditional quantiles from netdissect import tally upfn = upsample.upsampler( (56, 56), # The target output shape (7, 7), source=dataset, ) renorm = renormalize.renormalizer(dataset, mode='zc') def compute_samples(batch, *args): image_batch = batch.cuda() _ = model(image_batch) acts = model.retained_layer(layername) hacts = upfn(acts) return hacts.permute(0, 2, 3, 1).contiguous().view(-1, acts.shape[1]) pbar.descnext('rq') rq = tally.tally_quantile(compute_samples, dataset, sample_size=sample_size, r=8192, cachefile=resfile('rq.npz'))
def main(): # Load the arguments args = parse_option() dataset = args.dataset sample_size = args.sample_size layername = args.layer # Other values for places and imagenet MoCo model epoch = 240 image_size = 224 crop = 0.2 crop_padding = 32 batch_size = 1 num_workers = 24 train_sampler = None moco = True mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] normalize = transforms.Normalize(mean=mean, std=std) # Set appropriate paths folder_path = "/data/vision/torralba/ganprojects/yyou/CMC_data/{}_models".format( dataset) model_name = "/{}_MoCo0.999_softmax_16384_resnet50_lr_0.03".format(dataset) \ + "_decay_0.0001_bsz_128_crop_0.2_aug_CJ" epoch_name = "/ckpt_epoch_{}.pth".format(epoch) my_path = folder_path + model_name + epoch_name data_path = "/data/vision/torralba/datasets/" web_path = "/data/vision/torralba/scratch/yyou/wednesday/dissection/" if dataset == "imagenet": data_path += "imagenet_pytorch" web_path += dataset + "/" + layername elif dataset == "places365": data_path += "places/places365_standard/places365standard_easyformat" web_path += dataset + "/" + layername # Create web path folder directory for this layer if not os.path.exists(web_path): os.makedirs(web_path) # Load validation data loader val_folder = data_path + "/val" val_transform = transforms.Compose([ transforms.Resize(image_size + crop_padding), transforms.CenterCrop(image_size), transforms.ToTensor(), normalize, ]) ds = QuickImageFolder(val_folder, transform=val_transform, shuffle=True, two_crop=False) ds_loader = torch.utils.data.DataLoader(ds, batch_size=batch_size, shuffle=(train_sampler is None), num_workers=num_workers, pin_memory=True, sampler=train_sampler) # Load model from checkpoint checkpoint = torch.load(my_path) model_checkpoint = { key.replace(".module", ""): val for key, val in checkpoint['model'].items() } model = InsResNet50(parallel=False) model.load_state_dict(model_checkpoint) model = nethook.InstrumentedModel(model) model.cuda() # Renormalize RGB data from the staistical scaling in ds to [-1...1] range renorm = renormalize.renormalizer(source=ds, target='zc') # Retain desired layer with nethook batch = next(iter(ds_loader))[0] model.retain_layer(layername) model(batch.cuda()) acts = model.retained_layer(layername).cpu() upfn = upsample.upsampler( target_shape=(56, 56), data_shape=(7, 7), ) def flatten_activations(batch, *args): image_batch = batch _ = model(image_batch.cuda()) acts = model.retained_layer(layername).cpu() hacts = upfn(acts) return hacts.permute(0, 2, 3, 1).contiguous().view(-1, acts.shape[1]) def tally_quantile_for_layer(layername): rq = tally.tally_quantile( flatten_activations, dataset=ds, sample_size=sample_size, batch_size=100, cachefile='results/{}/{}_rq_cache.npz'.format(dataset, layername)) return rq rq = tally_quantile_for_layer(layername) # Visualize range of activations (statistics of each filter over the sample images) fig, axs = plt.subplots(2, 2, figsize=(10, 8)) axs = axs.flatten() quantiles = [0.5, 0.8, 0.9, 0.99] for i in range(4): axs[i].plot(rq.quantiles(quantiles[i])) axs[i].set_title("Rq quantiles ({})".format(quantiles[i])) fig.suptitle("{} - sample size of {}".format(dataset, sample_size)) plt.savefig(web_path + "/rq_quantiles") # Set the image visualizer with the rq and percent level iv = imgviz.ImageVisualizer(224, source=ds, percent_level=0.95, quantiles=rq) # Tally top k images that maximize the mean activation of the filter def max_activations(batch, *args): image_batch = batch.cuda() _ = model(image_batch) acts = model.retained_layer(layername) return acts.view(acts.shape[:2] + (-1, )).max(2)[0] def mean_activations(batch, *args): image_batch = batch.cuda() _ = model(image_batch) acts = model.retained_layer(layername) return acts.view(acts.shape[:2] + (-1, )).mean(2) topk = tally.tally_topk( mean_activations, dataset=ds, sample_size=sample_size, batch_size=100, cachefile='results/{}/{}_cache_mean_topk.npz'.format( dataset, layername)) top_indexes = topk.result()[1] # Visualize top-activating images for a particular unit if not os.path.exists(web_path + "/top_activating_imgs"): os.makedirs(web_path + "/top_activating_imgs") def top_activating_imgs(unit): img_ids = [i for i in top_indexes[unit, :12]] images = [iv.masked_image(ds[i][0], \ model.retained_layer(layername)[0], unit) \ for i in img_ids] preds = [ds.classes[model(ds[i][0][None].cuda()).max(1)[1].item()]\ for i in img_ids] fig, axs = plt.subplots(3, 4, figsize=(16, 12)) axs = axs.flatten() for i in range(12): axs[i].imshow(images[i]) axs[i].tick_params(axis='both', which='both', bottom=False, \ left=False, labelbottom=False, labelleft=False) axs[i].set_title("img {} \n pred: {}".format(img_ids[i], preds[i])) fig.suptitle("unit {}".format(unit)) plt.savefig(web_path + "/top_activating_imgs/unit_{}".format(unit)) for unit in np.random.randint(len(top_indexes), size=10): top_activating_imgs(unit) def compute_activations(image_batch): image_batch = image_batch.cuda() _ = model(image_batch) acts_batch = model.retained_layer(layername) return acts_batch unit_images = iv.masked_images_for_topk( compute_activations, ds, topk, k=5, num_workers=10, pin_memory=True, cachefile='results/{}/{}_cache_top10images.npz'.format( dataset, layername)) file = open("results/{}/unit_images.pkl".format(dataset, layername), 'wb') pickle.dump(unit_images, file) # Load a segmentation model segmodel, seglabels, segcatlabels = setting.load_segmenter('netpqc') # Intersections between every unit's 99th activation # and every segmentation class identified level_at_99 = rq.quantiles(0.99).cuda()[None, :, None, None] def compute_selected_segments(batch, *args): image_batch = batch.cuda() seg = segmodel.segment_batch(renorm(image_batch), downsample=4) _ = model(image_batch) acts = model.retained_layer(layername) hacts = upfn(acts) iacts = (hacts > level_at_99).float() # indicator where > 0.99 percentile. return tally.conditional_samples(iacts, seg) condi99 = tally.tally_conditional_mean( compute_selected_segments, dataset=ds, sample_size=sample_size, cachefile='results/{}/{}_cache_condi99.npz'.format(dataset, layername)) iou99 = tally.iou_from_conditional_indicator_mean(condi99) file = open("results/{}/{}_iou99.pkl".format(dataset, layername), 'wb') pickle.dump(iou99, file) # Show units with best match to a segmentation class iou_unit_label_99 = sorted( [(unit, concept.item(), seglabels[concept], bestiou.item()) for unit, (bestiou, concept) in enumerate(zip(*iou99.max(0)))], key=lambda x: -x[-1]) fig, axs = plt.subplots(20, 1, figsize=(20, 80)) axs = axs.flatten() for i, (unit, concept, label, score) in enumerate(iou_unit_label_99[:20]): axs[i].imshow(unit_images[unit]) axs[i].set_title('unit %d; iou %g; label "%s"' % (unit, score, label)) axs[i].set_xticks([]) axs[i].set_yticks([]) plt.savefig(web_path + "/best_unit_segmentation")