def sum_inplace_scalar(a): ar = _np.asarray(a) if _n_nodes > 1: MPI_py_comm.Allreduce(_MPI.IN_PLACE, ar.reshape(-1), op=_MPI.SUM) return ar
def sum_inplace_MPI(a): """ Computes the elementwise sum of a numpy array over all MPI processes. Args: a (numpy.ndarray): The input array, which will be overwritten in place. """ if _n_nodes > 1: MPI_py_comm.Allreduce(_MPI.IN_PLACE, a.reshape(-1), op=_MPI.SUM) return a
def total_size(a, axis=None): """ Compute the total number of elements stored in the input array among all MPI processes. This function essentially returns MPI_sum_among_processes(a.size). Args: a: The input array. axis: If specified, only considers the total size of that axis. Returns: a.size or a.shape[axis], reduced among all MPI processes. """ if axis is None: l_size = a.size else: l_size = a.shape[axis] if _n_nodes > 1: l_size = MPI_comm.allreduce(l_size, op=MPI.SUM) return l_size
def sum(a, axis=None, out=None, keepdims: bool = False): """ Compute the sum along the specified axis and over MPI processes. Args: a: The input array axis: Axis or axes along which the mean is computed. The default (None) is to compute the mean of the flattened array. out: An optional pre-allocated array to fill with the result. keepdims: If True the output array will have the same number of dimensions as the input, with the reduced axes having length 1. (default=False) Returns: The array with reduced dimensions defined by axis. If out is not none, returns out. """ # asarray is necessary for the axis=None case to work, as the MPI call requires a NumPy array out = _np.asarray(_np.sum(a, axis=axis, out=out, keepdims=keepdims)) if _n_nodes > 1: MPI_comm.Allreduce(MPI.IN_PLACE, out.reshape(-1), op=MPI.SUM) return out