예제 #1
0
def lp():
    for perc in np.linspace(0.0, 0.8, 9):  # now is percent block
        h.gnablock_ina2005 = perc  # h.perc_ina2005
        sim.runSim()
        sim.gatherData()
        sim.saveData(include=['simData'],
                     filename='data/19dec06blkA_%02d' % (100 * perc))
예제 #2
0
    def getGeppettoModel(self, netParams, simConfig):
        sim.create(netParams, simConfig, True)
        sim.gatherData()

        modelInterpreter = NetPyNEModelInterpreter()
        geppettoModel = modelInterpreter.getGeppettoModel(sim)
        sim.analyze()
예제 #3
0
    def _create3D_shapes(self, json_path: str):
        """ Creates cellShapes for 3D viewer.

        Performed as final step after `json_path` was loaded.
        """
        if len(sim.net.cells) > 0:
            section = list(sim.net.cells[0].secs.keys())[0]
            if 'pt3d' not in list(sim.net.cells[0].secs[section].geom.keys()):
                sim.net.defineCellShapes()
                sim.gatherData()
                # Load again because gatherData removed simData
                sim.loadSimData(json_path)
예제 #4
0
    def instantiateNetPyNEModel(self):
        with redirect_stdout(sys.__stdout__):
            saveData = sim.allSimData if hasattr(
                sim, 'allSimData') and 'spkt' in sim.allSimData.keys() and len(
                    sim.allSimData['spkt']) > 0 else False
            sim.create(self.netParams, self.simConfig)
            sim.net.defineCellShapes(
            )  # creates 3d pt for cells with stylized geometries
            sim.gatherData(gatherLFP=False)
            if saveData:
                sim.allSimData = saveData  # preserve data from previous simulation

        return sim
예제 #5
0
    def instantiateModel(self):
        """

        Instantiates model
        Sets netParams and cellParams given cfg values
        Takes snapshot of cfg

        Returns
        -------
        SimConfig
            generated SimConfig

        """
        netParams_snapshot = set_netParams(self.cfg)
        netParams_snapshot.cellParams = set_cellParams(self.cfg)
        sim.create(simConfig=self.cfg, netParams=netParams_snapshot)
        sim.gatherData(gatherLFP=False)
        self.last_cfg_snapshot = self.cfg.__dict__.copy()
        return sim
예제 #6
0
def plot_batch_ind_conn(batchLabel,
                        batchdatadir=batchdatadir,
                        includePre=['all'],
                        includePost=['all'],
                        feature='strength',
                        orderBy='gid',
                        figSize=(10, 10),
                        groupBy='pop',
                        groupByIntervalPre=None,
                        groupByIntervalPost=None,
                        graphType='matrix',
                        synOrConn='syn',
                        synMech=None,
                        connsFile=None,
                        tagsFile=None,
                        clim=None,
                        fontSize=12,
                        saveData=None,
                        showFig=False,
                        save=True,
                        outputdir='batch_figs'):
    """Plots individual connectivity plots for each parameter combination."""

    from netpyne import specs

    if type(batchLabel) == str:
        params, data = batch_utils.load_batch(batchLabel,
                                              batchdatadir=batchdatadir)
    elif type(batchLabel) == tuple:
        batchLabel, params, data = batchLabel
    else:
        raise Exception()

    simLabels = data.keys()

    for simLabel in simLabels:

        print('Plotting sim: ' + simLabel)

        datum = data[simLabel]

        cfg = specs.SimConfig(datum['simConfig'])
        cfg.createNEURONObj = False

        sim.initialize()  # create network object and set cfg and net params
        sim.loadAll('', data=datum, instantiate=False)
        sim.setSimCfg(cfg)
        try:
            print('Cells created: ' + str(len(sim.net.allCells)))
        except:
            print('Alternate sim loading...')
            sim.net.createPops()
            sim.net.createCells()
            sim.setupRecording()
            sim.gatherData()

        sim.allSimData = datum['simData']

        features = [
            'weight', 'delay', 'numConns', 'probability', 'strength',
            'convergence', 'divergence'
        ]

        for feature in features:

            if save:
                saveFig = batchdatadir + '/' + batchLabel + '/' + 'connFig_' + feature + simLabel + '.png'
            else:
                saveFig = None

            sim.analysis.plotConn(includePre=includePre,
                                  includePost=includePost,
                                  feature=feature,
                                  orderBy=orderBy,
                                  figSize=figSize,
                                  groupBy=groupBy,
                                  groupByIntervalPre=groupByIntervalPre,
                                  groupByIntervalPost=groupByIntervalPost,
                                  graphType=graphType,
                                  synOrConn=synOrConn,
                                  synMech=synMech,
                                  connsFile=connsFile,
                                  tagsFile=tagsFile,
                                  clim=clim,
                                  fontSize=fontSize,
                                  saveData=saveData,
                                  saveFig=saveFig,
                                  showFig=showFig)
예제 #7
0
def plot_batch_ind_stats(batchLabel,
                         batchdatadir=batchdatadir,
                         include=['allCells', 'eachPop'],
                         statDataIn={},
                         timeRange=None,
                         graphType='boxplot',
                         stats=['rate', 'isicv'],
                         bins=50,
                         popColors=[],
                         histlogy=False,
                         histlogx=False,
                         histmin=0.0,
                         density=False,
                         includeRate0=False,
                         legendLabels=None,
                         normfit=False,
                         histShading=True,
                         xlim=None,
                         dpi=100,
                         figSize=(6, 8),
                         fontSize=12,
                         saveData=None,
                         showFig=True,
                         save=True,
                         outputdir='batch_figs'):
    """Plots individual connectivity plots for each parameter combination."""

    from netpyne import specs

    if type(batchLabel) == str:
        params, data = batch_utils.load_batch(batchLabel,
                                              batchdatadir=batchdatadir)
    elif type(batchLabel) == tuple:
        batchLabel, params, data = batchLabel
    else:
        raise Exception()

    simLabels = data.keys()

    for simLabel in simLabels:

        print('Plotting sim: ' + simLabel)

        datum = data[simLabel]

        cfg = specs.SimConfig(datum['simConfig'])
        cfg.createNEURONObj = False

        sim.initialize()  # create network object and set cfg and net params
        sim.loadAll('', data=datum, instantiate=False)
        sim.setSimCfg(cfg)
        try:
            print('Cells created: ' + str(len(sim.net.allCells)))
        except:
            print('Alternate sim loading...')
            sim.net.createPops()
            sim.net.createCells()
            sim.setupRecording()
            sim.gatherData()

        sim.allSimData = datum['simData']

        if save:
            saveFig = batchdatadir + '/' + batchLabel + '/' + 'statFig_' + simLabel
        else:
            saveFig = None

        sim.analysis.plotSpikeStats(include=include,
                                    statDataIn=statDataIn,
                                    timeRange=timeRange,
                                    graphType=graphType,
                                    stats=stats,
                                    bins=bins,
                                    popColors=popColors,
                                    histlogy=histlogy,
                                    histlogx=histlogx,
                                    histmin=histmin,
                                    density=density,
                                    includeRate0=includeRate0,
                                    legendLabels=legendLabels,
                                    normfit=normfit,
                                    histShading=histShading,
                                    xlim=xlim,
                                    dpi=dpi,
                                    figSize=figSize,
                                    fontSize=fontSize,
                                    saveData=saveData,
                                    saveFig=saveFig,
                                    showFig=showFig)
예제 #8
0
def plot_batch_ind_raster(batchLabel,
                          batchdatadir=batchdatadir,
                          include=['allCells'],
                          timeRange=None,
                          maxSpikes=1e8,
                          orderBy='gid',
                          orderInverse=False,
                          labels='legend',
                          popRates=False,
                          spikeHist=None,
                          spikeHistBin=5,
                          syncLines=False,
                          figSize=(10, 8),
                          saveData=None,
                          showFig=False,
                          save=True,
                          outputdir='batch_figs'):
    """Plots individual raster plots for each parameter combination."""

    from netpyne import specs

    if type(batchLabel) == str:
        params, data = batch_utils.load_batch(batchLabel,
                                              batchdatadir=batchdatadir)
    elif type(batchLabel) == tuple:
        batchLabel, params, data = batchLabel
    else:
        raise Exception()

    simLabels = data.keys()

    for simLabel in simLabels:

        print('Plotting sim: ' + simLabel)

        datum = data[simLabel]

        cfg = specs.SimConfig(datum['simConfig'])
        cfg.createNEURONObj = False

        sim.initialize()  # create network object and set cfg and net params
        sim.loadAll('', data=datum, instantiate=False)
        sim.setSimCfg(cfg)
        try:
            print('Cells created: ' + str(len(sim.net.allCells)))
        except:
            print('Alternate sim loading...')
            sim.net.createPops()
            sim.net.createCells()
            sim.setupRecording()
            sim.gatherData()

        sim.allSimData = datum['simData']

        if save:
            saveFig = batchdatadir + '/' + batchLabel + '/' + 'rasterFig' + simLabel + '.png'
        else:
            saveFig = None

        sim.analysis.plotRaster(include=include,
                                timeRange=timeRange,
                                maxSpikes=maxSpikes,
                                orderBy=orderBy,
                                orderInverse=orderInverse,
                                labels=labels,
                                popRates=popRates,
                                spikeHist=spikeHist,
                                spikeHistBin=spikeHistBin,
                                syncLines=syncLines,
                                figSize=figSize,
                                saveData=saveData,
                                saveFig=saveFig,
                                showFig=showFig)
예제 #9
0
sim.createSimulateAnalyze(netParams, cfg)

# Saving different network components to file
sim.cfg.saveJson = True

# save network params (rules)
sim.saveData(include=['netParams'], filename='out_netParams')

# save network instance
sim.saveData(include=['net'], filename='out_netInstance')

# save network params and instance together
sim.saveData(include=['netParams', 'net'],
             filename='out_netParams_netInstance')

# save sim config
sim.saveData(include=['simConfig'], filename='out_simConfig')

# save sim output data
sim.saveData(include=['simData'], filename='out_simData')

# save network instance with compact conn format (list instead of dict)
sim.cfg.compactConnFormat = [
    'preGid', 'sec', 'loc', 'synMech', 'weight', 'delay'
]
sim.gatherData()
sim.saveData(include=['net'], filename='out_netInstanceCompact')

# check model output
sim.checkOutput('saving')
예제 #10
0
def generate_and_run(simulation,
                     simulator,
                     network=None,
                     return_results=False,
                     base_dir=None,
                     target_dir=None,
                     num_processors=1):
    """
    Generates the network in the specified simulator and runs, if appropriate
    """

    if network == None:
        network = load_network_json(simulation.network)

    print_v("Generating network %s and running in simulator: %s..." %
            (network.id, simulator))

    if simulator == 'NEURON':

        _generate_neuron_files_from_neuroml(network,
                                            dir_for_mod_files=target_dir)

        from neuromllite.NeuronHandler import NeuronHandler

        nrn_handler = NeuronHandler()

        for c in network.cells:
            if c.neuroml2_source_file:
                src_dir = os.path.dirname(
                    os.path.abspath(c.neuroml2_source_file))
                nrn_handler.executeHoc('load_file("%s/%s.hoc")' %
                                       (src_dir, c.id))

        generate_network(network, nrn_handler, generate_network, base_dir)
        if return_results:
            raise NotImplementedError(
                "Reloading results not supported in Neuron yet...")

    elif simulator.lower() == 'sonata':  # Will not "run" obviously...

        from neuromllite.SonataHandler import SonataHandler

        sonata_handler = SonataHandler()

        generate_network(network,
                         sonata_handler,
                         always_include_props=True,
                         base_dir=base_dir)

        print_v("Done with Sonata...")

    elif simulator.lower().startswith('graph'):  # Will not "run" obviously...

        from neuromllite.GraphVizHandler import GraphVizHandler, engines

        try:
            if simulator[-1].isalpha():
                engine = engines[simulator[-1]]
                level = int(simulator[5:-1])
            else:
                engine = 'dot'
                level = int(simulator[5:])

        except Exception as e:
            print_v("Error parsing: %s: %s" % (simulator, e))
            print_v(
                "Graphs of the network structure can be generated at many levels of detail (1-6, required) and laid out using GraphViz engines (d - dot (default); c - circo; n - neato; f - fdp), so use: -graph3c, -graph2, -graph4f etc."
            )
            return

        handler = GraphVizHandler(level, engine=engine, nl_network=network)

        generate_network(network,
                         handler,
                         always_include_props=True,
                         base_dir=base_dir)

        print_v("Done with GraphViz...")

    elif simulator.lower().startswith('matrix'):  # Will not "run" obviously...

        from neuromllite.MatrixHandler import MatrixHandler

        try:
            level = int(simulator[6:])
        except:
            print_v("Error parsing: %s" % simulator)
            print_v(
                "Matrices of the network structure can be generated at many levels of detail (1-n, required), so use: -matrix1, -matrix2, etc."
            )
            return

        handler = MatrixHandler(level, nl_network=network)

        generate_network(network,
                         handler,
                         always_include_props=True,
                         base_dir=base_dir)

        print_v("Done with MatrixHandler...")

    elif simulator.startswith('PyNN'):

        #_generate_neuron_files_from_neuroml(network)
        simulator_name = simulator.split('_')[1].lower()

        from neuromllite.PyNNHandler import PyNNHandler

        pynn_handler = PyNNHandler(simulator_name, simulation.dt, network.id)

        syn_cell_params = {}
        for proj in network.projections:

            synapse = network.get_child(proj.synapse, 'synapses')
            post_pop = network.get_child(proj.postsynaptic, 'populations')

            if not post_pop.component in syn_cell_params:
                syn_cell_params[post_pop.component] = {}
            for p in synapse.parameters:
                post = ''
                if synapse.pynn_receptor_type == "excitatory":
                    post = '_E'
                elif synapse.pynn_receptor_type == "inhibitory":
                    post = '_I'
                syn_cell_params[post_pop.component][
                    '%s%s' % (p, post)] = synapse.parameters[p]

        cells = {}
        for c in network.cells:
            if c.pynn_cell:
                cell_params = {}
                if c.parameters:
                    for p in c.parameters:
                        cell_params[p] = evaluate(c.parameters[p],
                                                  network.parameters)

                dont_set_here = [
                    'tau_syn_E', 'e_rev_E', 'tau_syn_I', 'e_rev_I'
                ]
                for d in dont_set_here:
                    if d in c.parameters:
                        raise Exception(
                            'Synaptic parameters like %s should be set ' +
                            'in individual synapses, not in the list of parameters associated with the cell'
                            % d)
                if c.id in syn_cell_params:
                    cell_params.update(syn_cell_params[c.id])
                print_v("Creating cell with params: %s" % cell_params)
                exec('cells["%s"] = pynn_handler.sim.%s(**cell_params)' %
                     (c.id, c.pynn_cell))

                if c.pynn_cell != 'SpikeSourcePoisson':
                    exec(
                        "cells['%s'].default_initial_values['v'] = cells['%s'].parameter_space['v_rest'].base_value"
                        % (c.id, c.id))

        pynn_handler.set_cells(cells)

        receptor_types = {}
        for s in network.synapses:
            if s.pynn_receptor_type:
                receptor_types[s.id] = s.pynn_receptor_type

        pynn_handler.set_receptor_types(receptor_types)

        for input_source in network.input_sources:
            if input_source.pynn_input:
                pynn_handler.add_input_source(input_source)

        generate_network(network,
                         pynn_handler,
                         always_include_props=True,
                         base_dir=base_dir)

        for pid in pynn_handler.populations:
            pop = pynn_handler.populations[pid]
            if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces:
                if pop.can_record('v'):
                    pop.record('v')

        pynn_handler.sim.run(simulation.duration)
        pynn_handler.sim.end()

        traces = {}
        events = {}

        if not 'NeuroML' in simulator:
            from neo.io import PyNNTextIO

            for pid in pynn_handler.populations:
                pop = pynn_handler.populations[pid]

                if 'all' in simulation.recordTraces or pop.label in simulation.recordTraces:

                    filename = "%s.%s.v.dat" % (simulation.id, pop.label)
                    all_columns = []
                    print_v("Writing data for %s to %s" %
                            (pop.label, filename))
                    for i in range(len(pop)):
                        if pop.can_record('v'):
                            ref = '%s[%i]' % (pop.label, i)
                            traces[ref] = []
                            data = pop.get_data('v', gather=False)
                            for segment in data.segments:
                                vm = segment.analogsignals[0].transpose()[i]

                                if len(all_columns) == 0:
                                    tt = np.array([
                                        t * simulation.dt / 1000.
                                        for t in range(len(vm))
                                    ])
                                    all_columns.append(tt)
                                vm_si = [float(v / 1000.) for v in vm]
                                traces[ref] = vm_si
                                all_columns.append(vm_si)

                            times_vm = np.array(all_columns).transpose()

                    np.savetxt(filename, times_vm, delimiter='\t', fmt='%s')

        if return_results:
            _print_result_info(traces, events)
            return traces, events

    elif simulator == 'NetPyNE':

        if target_dir == None:
            target_dir = './'

        _generate_neuron_files_from_neuroml(network,
                                            dir_for_mod_files=target_dir)

        from netpyne import specs
        from netpyne import sim
        # Note NetPyNE from this branch is required: https://github.com/Neurosim-lab/netpyne/tree/neuroml_updates
        from netpyne.conversion.neuromlFormat import NetPyNEBuilder

        import pprint
        pp = pprint.PrettyPrinter(depth=6)

        netParams = specs.NetParams()
        simConfig = specs.SimConfig()
        netpyne_handler = NetPyNEBuilder(netParams,
                                         simConfig=simConfig,
                                         verbose=True)

        generate_network(network, netpyne_handler, base_dir=base_dir)

        netpyne_handler.finalise()

        simConfig = specs.SimConfig()
        simConfig.tstop = simulation.duration
        simConfig.duration = simulation.duration
        simConfig.dt = simulation.dt
        simConfig.seed = simulation.seed
        simConfig.recordStep = simulation.dt

        simConfig.recordCells = ['all']
        simConfig.recordTraces = {}

        for pop in netpyne_handler.popParams.values():
            if 'all' in simulation.recordTraces or pop.id in simulation.recordTraces:
                for i in pop['cellsList']:
                    id = pop['pop']
                    index = i['cellLabel']
                    simConfig.recordTraces['v_%s_%s' % (id, index)] = {
                        'sec': 'soma',
                        'loc': 0.5,
                        'var': 'v',
                        'conds': {
                            'pop': id,
                            'cellLabel': index
                        }
                    }

        simConfig.saveDat = True

        print_v("NetPyNE netParams: ")
        pp.pprint(netParams.todict())
        #print_v("NetPyNE simConfig: ")
        #pp.pprint(simConfig.todict())

        sim.initialize(
            netParams,
            simConfig)  # create network object and set cfg and net params

        sim.net.createPops()
        cells = sim.net.createCells(
        )  # instantiate network cells based on defined populations

        for proj_id in netpyne_handler.projection_infos.keys():
            projName, prePop, postPop, synapse, ptype = netpyne_handler.projection_infos[
                proj_id]
            print_v("Creating connections for %s (%s): %s->%s via %s" %
                    (projName, ptype, prePop, postPop, synapse))

            preComp = netpyne_handler.pop_ids_vs_components[prePop]

            for conn in netpyne_handler.connections[projName]:

                pre_id, pre_seg, pre_fract, post_id, post_seg, post_fract, delay, weight = conn

                #connParam = {'delay':delay,'weight':weight,'synsPerConn':1, 'sec':post_seg, 'loc':post_fract, 'threshold':threshold}
                connParam = {
                    'delay': delay,
                    'weight': weight,
                    'synsPerConn': 1,
                    'sec': post_seg,
                    'loc': post_fract
                }

                if ptype == 'electricalProjection':

                    if weight != 1:
                        raise Exception(
                            'Cannot yet support inputs where weight !=1!')
                    connParam = {
                        'synsPerConn': 1,
                        'sec': post_seg,
                        'loc': post_fract,
                        'gapJunction': True,
                        'weight': weight
                    }
                else:
                    connParam = {
                        'delay': delay,
                        'weight': weight,
                        'synsPerConn': 1,
                        'sec': post_seg,
                        'loc': post_fract
                    }
                    #'threshold': threshold}

                connParam['synMech'] = synapse

                if post_id in sim.net.gid2lid:  # check if postsyn is in this node's list of gids
                    sim.net._addCellConn(connParam, pre_id, post_id)

        stims = sim.net.addStims(
        )  # add external stimulation to cells (IClamps etc)
        simData = sim.setupRecording(
        )  # setup variables to record for each cell (spikes, V traces, etc)
        sim.runSim()  # run parallel Neuron simulation
        sim.gatherData()  # gather spiking data and cell info from each node
        sim.saveData(
        )  # save params, cell info and sim output to file (pickle,mat,txt,etc)

        if return_results:
            raise NotImplementedError(
                "Reloading results not supported in NetPyNE yet...")

    elif simulator == 'jNeuroML' or simulator == 'jNeuroML_NEURON' or simulator == 'jNeuroML_NetPyNE':

        from pyneuroml.lems import generate_lems_file_for_neuroml
        from pyneuroml import pynml

        lems_file_name = 'LEMS_%s.xml' % simulation.id

        nml_file_name, nml_doc = generate_neuroml2_from_network(
            network, base_dir=base_dir, target_dir=target_dir)
        included_files = ['PyNN.xml']

        for c in network.cells:
            if c.lems_source_file:
                included_files.append(c.lems_source_file)
        '''
        if network.cells:
            for c in network.cells:
                included_files.append(c.neuroml2_source_file)
        '''
        if network.synapses:
            for s in network.synapses:
                if s.lems_source_file:
                    included_files.append(s.lems_source_file)

        print_v("Generating LEMS file prior to running in %s" % simulator)

        pops_plot_save = []
        pops_spike_save = []
        gen_plots_for_quantities = {}
        gen_saves_for_quantities = {}

        for p in network.populations:

            if simulation.recordTraces and ('all' in simulation.recordTraces or
                                            p.id in simulation.recordTraces):
                pops_plot_save.append(p.id)

            if simulation.recordSpikes and ('all' in simulation.recordSpikes or
                                            p.id in simulation.recordSpikes):
                pops_spike_save.append(p.id)

            if simulation.recordRates and ('all' in simulation.recordRates
                                           or p.id in simulation.recordRates):
                size = evaluate(p.size, network.parameters)
                for i in range(size):
                    quantity = '%s/%i/%s/r' % (p.id, i, p.component)
                    gen_plots_for_quantities['%s_%i_r' %
                                             (p.id, i)] = [quantity]
                    gen_saves_for_quantities['%s_%i.r.dat' %
                                             (p.id, i)] = [quantity]

            if simulation.recordVariables:
                for var in simulation.recordVariables:
                    to_rec = simulation.recordVariables[var]
                    if ('all' in to_rec or p.id in to_rec):
                        size = evaluate(p.size, network.parameters)
                        for i in range(size):
                            quantity = '%s/%i/%s/%s' % (p.id, i, p.component,
                                                        var)
                            gen_plots_for_quantities['%s_%i_%s' %
                                                     (p.id, i, var)] = [
                                                         quantity
                                                     ]
                            gen_saves_for_quantities['%s_%i.%s.dat' %
                                                     (p.id, i, var)] = [
                                                         quantity
                                                     ]

        generate_lems_file_for_neuroml(
            simulation.id,
            nml_file_name,
            network.id,
            simulation.duration,
            simulation.dt,
            lems_file_name,
            target_dir=target_dir if target_dir else '.',
            nml_doc=
            nml_doc,  # Use this if the nml doc has already been loaded (to avoid delay in reload)
            include_extra_files=included_files,
            gen_plots_for_all_v=False,
            plot_all_segments=False,
            gen_plots_for_quantities=
            gen_plots_for_quantities,  # Dict with displays vs lists of quantity paths
            gen_plots_for_only_populations=
            pops_plot_save,  # List of populations, all pops if = []
            gen_saves_for_all_v=False,
            save_all_segments=False,
            gen_saves_for_only_populations=
            pops_plot_save,  # List of populations, all pops if = []
            gen_saves_for_quantities=
            gen_saves_for_quantities,  # Dict with file names vs lists of quantity paths
            gen_spike_saves_for_all_somas=False,
            gen_spike_saves_for_only_populations=
            pops_spike_save,  # List of populations, all pops if = []
            gen_spike_saves_for_cells=
            {},  # Dict with file names vs lists of quantity paths
            spike_time_format='ID_TIME',
            copy_neuroml=True,
            lems_file_generate_seed=12345,
            report_file_name='report.%s.txt' % simulation.id,
            simulation_seed=simulation.seed if simulation.seed else 12345,
            verbose=True)

        lems_file_name = _locate_file(lems_file_name, target_dir)

        if simulator == 'jNeuroML':
            results = pynml.run_lems_with_jneuroml(
                lems_file_name,
                nogui=True,
                load_saved_data=return_results,
                reload_events=return_results)
        elif simulator == 'jNeuroML_NEURON':
            results = pynml.run_lems_with_jneuroml_neuron(
                lems_file_name,
                nogui=True,
                load_saved_data=return_results,
                reload_events=return_results)
        elif simulator == 'jNeuroML_NetPyNE':
            results = pynml.run_lems_with_jneuroml_netpyne(
                lems_file_name,
                nogui=True,
                verbose=True,
                load_saved_data=return_results,
                reload_events=return_results,
                num_processors=num_processors)

        print_v("Finished running LEMS file %s in %s (returning results: %s)" %
                (lems_file_name, simulator, return_results))

        if return_results:
            traces, events = results
            _print_result_info(traces, events)
            return results  # traces, events =
예제 #11
0
    def loadModel(self, args):
        """ Imports a model stored as file in json format.

        :param args:
        :return:
        """
        def remove(dictionary):
            # remove reserved keys such as __dict__, __Method__, etc
            # they appear when we do sim.loadAll(json_file)
            if isinstance(dictionary, dict):
                for key, value in list(dictionary.items()):
                    if key.startswith('__'):
                        dictionary.pop(key)
                    else:
                        remove(value)

        if not any([
                args[option] for option in
            ['loadNetParams', 'loadSimCfg', 'loadSimData', 'loadNet']
        ]):
            return utils.getJSONError(
                "Error while loading data",
                'You have to select at least one option')

        try:
            owd = os.getcwd()
            compileModMechFiles(args['compileMod'], args['modFolder'])
        except:
            return utils.getJSONError("Error while importing/compiling mods",
                                      sys.exc_info())
        finally:
            os.chdir(owd)

        try:
            with redirect_stdout(sys.__stdout__):
                sim.initialize()
                wake_up_geppetto = False
                if all([
                        args[option] for option in
                    ['loadNetParams', 'loadSimCfg', 'loadSimData', 'loadNet']
                ]):
                    wake_up_geppetto = True
                    if self.doIhaveInstOrSimData()['haveInstance']:
                        sim.clearAll()
                    sim.initialize()
                    sim.loadAll(args['jsonModelFolder'])
                    self.netParams = sim.net.params
                    self.simConfig = sim.cfg
                    remove(self.netParams.todict())
                    remove(self.simConfig.todict())
                else:
                    if args['loadNet']:
                        wake_up_geppetto = True
                        if self.doIhaveInstOrSimData()['haveInstance']:
                            sim.clearAll()
                        sim.initialize()
                        sim.loadNet(args['jsonModelFolder'])

                    if args['loadSimData']:  # TODO (https://github.com/Neurosim-lab/netpyne/issues/360)
                        wake_up_geppetto = True
                        if not self.doIhaveInstOrSimData()['haveInstance']:
                            sim.create(specs.NetParams(), specs.SimConfig())
                            sim.net.defineCellShapes()
                            sim.gatherData(gatherLFP=False)
                        sim.loadSimData(args['jsonModelFolder'])

                    if args['loadSimCfg']:
                        sim.loadSimCfg(args['jsonModelFolder'])
                        self.simConfig = sim.cfg
                        remove(self.simConfig.todict())

                    if args['loadNetParams']:
                        if self.doIhaveInstOrSimData()['haveInstance']:
                            sim.clearAll()
                        sim.loadNetParams(args['jsonModelFolder'])
                        self.netParams = sim.net.params
                        remove(self.netParams.todict())

                if wake_up_geppetto:
                    if len(sim.net.cells) > 0:
                        section = list(sim.net.cells[0].secs.keys())[0]
                        if 'pt3d' not in list(
                                sim.net.cells[0].secs[section].geom.keys()):
                            sim.net.defineCellShapes()
                            sim.gatherData()
                            sim.loadSimData(args['jsonModelFolder'])

                    sim.gatherData()
                    self.geppetto_model = self.model_interpreter.getGeppettoModel(
                        sim)
                    return json.loads(
                        GeppettoModelSerializer.serialize(self.geppetto_model))
                else:
                    return utils.getJSONReply()
        except:
            return utils.getJSONError("Error while loading the NetPyNE model",
                                      sys.exc_info())
예제 #12
0
k = 0
for x in range(0, len(sim.net.cells)):
    if 'inInh' in sim.net.cells[x].tags['pop']:
        sim.net.cells[x].params['interval'] = 1000 / frinh[i]
        i += 1
    if 'inL23exc' in sim.net.cells[x].tags['pop']:
        sim.net.cells[x].params['interval'] = 1000 / frl23[j]
        j += 1
    if 'inL5exc' in sim.net.cells[x].tags['pop']:
        sim.net.cells[x].params['interval'] = 1000 / frl5[k]
        k += 1
# %%
sim.setupRecording(
)  # setup variables to record for each cell (spikes, V traces, etc)
sim.runSim()  # run parallel Neuron simulation
sim.gatherData()  # gather spiking data and cell info from each node
sim.saveData(
)  # save params, cell info and sim output to file (pickle,mat,txt,etc)
sim.analysis.plotData()  # plot spike raster
#%% Save raster for each population
sim.analysis.plotRaster(include=[('L23exc'), ('inL23exc')],
                        spikeHist='overlay',
                        spikeHistBin=10,
                        saveData='raster_TMSall_single_L23.pkl')
sim.analysis.plotRaster(include=[('L5exc'), ('inL5exc')],
                        spikeHist='overlay',
                        spikeHistBin=10,
                        saveData='raster_TMSall_single_L5.pkl')
sim.analysis.plotRaster(include=[('Inh'), ('inInh')],
                        spikeHist='overlay',
                        spikeHistBin=10,
예제 #13
0
파일: tut7.py 프로젝트: eforzano/netpyne
###############################################################################
# EXECUTION CODE (via netpyne)
###############################################################################
from netpyne import sim

# Create network and run simulation
sim.initialize(                       # create network object and set cfg and net params
    simConfig = simConfig,   # pass simulation config and network params as arguments
    netParams = netParams)   
sim.net.createPops()                      # instantiate network populations
sim.net.createCells()                     # instantiate network cells based on defined populations
sim.net.connectCells()                    # create connections between cells based on params
sim.setupRecording()                  # setup variables to record for each cell (spikes, V traces, etc)
sim.runSim()                          # run parallel Neuron simulation  
sim.gatherData()                      # gather spiking data and cell info from each node
sim.saveData()                        # save params, cell info and sim output to file (pickle,mat,txt,etc)
sim.analysis.plotData()                   # plot spike raster


# ###############################################################################
# # INTERACTING WITH INSTANTIATED NETWORK
# ###############################################################################

# modify conn weights
sim.net.modifyConns({'conds': {'label': 'hop->hop'}, 'weight': 0.5})

sim.runSim()                          # run parallel Neuron simulation  
sim.gatherData()                      # gather spiking data and cell info from each node
sim.saveData()                        # save params, cell info and sim output to file (pickle,mat,txt,etc)
sim.analysis.plotData()                   # plot spike raster
예제 #14
0
    def loadModel(self, args):
        """ Imports a model stored as file in json format.

        :param args:
        :return:
        """
        if not any([
                args[option] for option in
            ['loadNetParams', 'loadSimCfg', 'loadSimData', 'loadNet']
        ]):
            return utils.getJSONError(
                "Error while loading data",
                'You have to select at least one option')

        try:
            owd = os.getcwd()
            compileModMechFiles(args['compileMod'], args['modFolder'])
        except Exception:
            message = "Error while importing/compiling mods"
            logging.exception(message)
            return utils.getJSONError(message, sys.exc_info())
        finally:
            os.chdir(owd)

        try:
            with redirect_stdout(sys.__stdout__):
                sim.initialize()
                wake_up_geppetto = False
                if all([
                        args[option] for option in
                    ['loadNetParams', 'loadSimCfg', 'loadSimData', 'loadNet']
                ]):
                    wake_up_geppetto = True
                    if self.doIhaveInstOrSimData()['haveInstance']:
                        sim.clearAll()
                    sim.initialize()
                    sim.loadAll(args['jsonModelFolder'])
                    self.netParams = sim.net.params
                    self.simConfig = sim.cfg
                    netpyne_ui_utils.remove(self.netParams.todict())
                    netpyne_ui_utils.remove(self.simConfig.todict())
                else:
                    if args['loadNet']:
                        wake_up_geppetto = True
                        if self.doIhaveInstOrSimData()['haveInstance']:
                            sim.clearAll()
                        sim.initialize()
                        sim.loadNet(args['jsonModelFolder'])

                    # TODO (https://github.com/Neurosim-lab/netpyne/issues/360)
                    if args['loadSimData']:
                        wake_up_geppetto = True
                        if not self.doIhaveInstOrSimData()['haveInstance']:
                            sim.create(specs.NetParams(), specs.SimConfig())
                            sim.net.defineCellShapes()
                            sim.gatherData(gatherLFP=False)
                        sim.loadSimData(args['jsonModelFolder'])

                    if args['loadSimCfg']:
                        sim.loadSimCfg(args['jsonModelFolder'])
                        self.simConfig = sim.cfg
                        netpyne_ui_utils.remove(self.simConfig.todict())

                    if args['loadNetParams']:
                        if self.doIhaveInstOrSimData()['haveInstance']:
                            sim.clearAll()
                        sim.loadNetParams(args['jsonModelFolder'])
                        self.netParams = sim.net.params
                        netpyne_ui_utils.remove(self.netParams.todict())

                if wake_up_geppetto:
                    self._create3D_shapes(args['jsonModelFolder'])

                    # TODO: Fix me - gatherData will remove allSimData!
                    sim.gatherData()

                    self.geppetto_model = self.model_interpreter.getGeppettoModel(
                        sim)
                    return json.loads(
                        GeppettoModelSerializer.serialize(self.geppetto_model))
                else:
                    return utils.getJSONReply()
        except Exception:
            message = "Error while loading the NetPyNE model"
            logging.exception(message)
            return utils.getJSONError(message, sys.exc_info())
simConfig.analysis['plotRaster'] = {
    'orderInverse': True,
}

#simConfig.analysis['plotTraces'] = {'include': [0,10,13,15]}
# simConfig.analysis['plot2Dnet'] = True
# simConfig.analysis['plotConn'] = True

# Plot recorded traces for this list of cells
# Create network and run simulation
sim.createSimulateAnalyze(netParams=netParams, simConfig=simConfig)

# calculate firing rate
# numSpikes = float(len(sim.simData['spkt']))
# numCells = float(len(sim.net.cells))

numSpikes_in = np.sum((np.array(sim.gatherData()['spkid']) >= 80) *
                      (np.array(sim.gatherData()['spkt']) > 100))
numCells_in = float(len(sim.net.cells[80:]))

numSpikes_exc = np.sum((np.array(sim.gatherData()['spkid']) < 80) *
                       (np.array(sim.gatherData()['spkt']) > 100))
numCells_exc = float(len(sim.net.cells[:80]))

duration = (simConfig.duration - 100) / 1000.0
# netFiring = numSpikes/numCells/duration
netFiring_exc = numSpikes_exc / numCells_exc / duration
netFiring_in = numSpikes_in / numCells_in / duration

print('firing rate: exc: ' + str(netFiring_exc) + ', in: ' + str(netFiring_in))