def lenet5(images, nclass): # conv 1 net = layers.conv_2d_layer(images, [5, 5, images.get_shape()[3], 20], nonlinearity=None, padding='SAME', name='conv_1', with_biases=False) biases = layers.variable_on_cpu('biases_1', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) net = tf.nn.relu(net) # max pool net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') # conv 2 net = layers.conv_2d_layer(net, [5, 5, net.get_shape()[3], 50], nonlinearity=None, padding='SAME', name='conv_2', with_biases=False) biases = layers.variable_on_cpu('biases_2', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) net = tf.nn.relu(net) # max pool net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') # reshape net = tf.reshape(net, [-1, (net.get_shape()[1]*net.get_shape()[2]*net.get_shape()[3]).value]) # dense 1 net = layers.dense_layer(net, net.get_shape()[1], 500, nonlinearity=None, name='dense_1') net = tf.nn.relu(net) # dense 2 net = layers.dense_layer(net, net.get_shape()[1], nclass, nonlinearity=None, name='dense_2') return net
def conv_bn_rectify(net, num_filters, name, is_training, reuse, kl_weight=1.0): with tf.variable_scope(name): net = layers.conv_2d_layer(net, [3,3, net.get_shape()[3], num_filters], nonlinearity=None, padding='SAME', name='conv', with_biases=False, reuse=reuse) net = layers.sbp_dropout(net, 3, is_training, 'sbp', reuse, kl_weight=kl_weight) biases = layers.variable_on_cpu('biases', net.get_shape()[3], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) net = tf.contrib.layers.batch_norm(net, scope=tf.get_variable_scope(), reuse=reuse, is_training=False, center=True, scale=True) net = tf.nn.relu(net) return net
def net_vgglike(images, nclass, scale, is_training, reuse): net = conv_bn_rectify(images, int(64*scale), 'conv_1', is_training, reuse, 10.0) net = conv_bn_rectify(net, int(64*scale), 'conv_2', is_training, reuse, 10.0) net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') net = conv_bn_rectify(net, int(128*scale), 'conv_3', is_training, reuse, 5.0) net = conv_bn_rectify(net, int(128*scale), 'conv_4', is_training, reuse, 5.0) net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') net = conv_bn_rectify(net, int(256*scale), 'conv_5', is_training, reuse) net = conv_bn_rectify(net, int(256*scale), 'conv_6', is_training, reuse) net = conv_bn_rectify(net, int(256*scale), 'conv_7', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') net = conv_bn_rectify(net, int(512*scale), 'conv_8', is_training, reuse) net = conv_bn_rectify(net, int(512*scale), 'conv_9', is_training, reuse) net = conv_bn_rectify(net, int(512*scale), 'conv_10', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') net = conv_bn_rectify(net, int(512*scale), 'conv_11', is_training, reuse) net = conv_bn_rectify(net, int(512*scale), 'conv_12', is_training, reuse) net = conv_bn_rectify(net, int(512*scale), 'conv_13', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') net = tf.reshape(net, [-1, (net.get_shape()[1]*net.get_shape()[2]*net.get_shape()[3]).value]) net = layers.sbp_dropout(net, 1, is_training, 'sbp_dense_1', reuse) net = layers.dense_layer(net, net.get_shape()[1], int(512*scale), nonlinearity=None, name='dense_1', with_biases=False) biases = layers.variable_on_cpu('biases_dense_1', net.get_shape()[1], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) net = tf.contrib.layers.batch_norm(net, scope=tf.get_variable_scope(), reuse=reuse, is_training=False, center=True, scale=True) net = tf.nn.relu(net) net = layers.sbp_dropout(net, 1, is_training, 'sbp_dense_2', reuse) net = layers.dense_layer(net, net.get_shape()[1], nclass, nonlinearity=None, name='dense_2', with_biases=False) biases = layers.variable_on_cpu('biases_dense_2', net.get_shape()[1], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) return net
def net_vgglike(images, nclass, num_filters, is_training, reuse): net = conv_bn_rectify(images, num_filters[0], 'conv_1', is_training, reuse) net = tf.contrib.layers.dropout(net, keep_prob=0.7, is_training=is_training) net = conv_bn_rectify(net, num_filters[1], 'conv_2', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') net = conv_bn_rectify(net, num_filters[2], 'conv_3', is_training, reuse) net = tf.contrib.layers.dropout(net, keep_prob=0.6, is_training=is_training) net = conv_bn_rectify(net, num_filters[3], 'conv_4', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') net = conv_bn_rectify(net, num_filters[4], 'conv_5', is_training, reuse) net = tf.contrib.layers.dropout(net, keep_prob=0.6, is_training=is_training) net = conv_bn_rectify(net, num_filters[5], 'conv_6', is_training, reuse) net = tf.contrib.layers.dropout(net, keep_prob=0.6, is_training=is_training) net = conv_bn_rectify(net, num_filters[6], 'conv_7', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') net = conv_bn_rectify(net, num_filters[7], 'conv_8', is_training, reuse) net = tf.contrib.layers.dropout(net, keep_prob=0.6, is_training=is_training) net = conv_bn_rectify(net, num_filters[8], 'conv_9', is_training, reuse) net = tf.contrib.layers.dropout(net, keep_prob=0.6, is_training=is_training) net = conv_bn_rectify(net, num_filters[9], 'conv_10', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') net = conv_bn_rectify(net, num_filters[10], 'conv_11', is_training, reuse) net = conv_bn_rectify(net, num_filters[11], 'conv_12', is_training, reuse) net = conv_bn_rectify(net, num_filters[12], 'conv_13', is_training, reuse) net = tf.nn.max_pool(net, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') net = tf.reshape(net, [ -1, (net.get_shape()[1] * net.get_shape()[2] * net.get_shape()[3]).value ]) net = tf.contrib.layers.dropout(net, keep_prob=0.5, is_training=is_training) net = layers.dense_layer(net, net.get_shape()[1], 512, nonlinearity=None, name='dense_1', with_biases=False) biases = layers.variable_on_cpu('biases_dense_1', net.get_shape()[1], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) net = tf.contrib.layers.batch_norm(net, scope=tf.get_variable_scope(), reuse=reuse, is_training=is_training, center=True, scale=True) net = tf.nn.relu(net) net = tf.contrib.layers.dropout(net, keep_prob=0.5, is_training=is_training) net = layers.dense_layer(net, net.get_shape()[1], nclass, nonlinearity=None, name='dense_2', with_biases=False) biases = layers.variable_on_cpu('biases_dense_2', net.get_shape()[1], tf.constant_initializer(0.0), dtype=tf.float32) net = tf.nn.bias_add(net, biases) tf.add_to_collection('logits', net) return net