예제 #1
0
def test(config):
    is_training = False
    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Set data parallel
    net = nn.DataParallel(net)
    # net = net.cuda()
    net = net.to(device)

    # import torch.onnx
    # # 按照输入格式,设计随机输入
    # dummy_input =torch.randn(1, 3, 416, 416).to(device)
    # # 导出模型
    # torch.onnx.export(net.module,dummy_input, 'darknet.onnx',verbose=True)

    # exit()
    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("load checkpoint from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)
    else:
        raise Exception("missing pretrain_snapshot!!!")

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"],
                     (config["img_w"], config["img_h"])))

    # prepare images path
    images_name = os.listdir(config["images_path"])
    images_path = [
        os.path.join(config["images_path"], name) for name in images_name
    ]
    if len(images_path) == 0:
        raise Exception("no image found in {}".format(config["images_path"]))

    # Start inference
    batch_size = config["batch_size"]
    for step in range(0, len(images_path), batch_size):
        # preprocess
        images = []
        images_origin = []
        for path in images_path[step * batch_size:(step + 1) * batch_size]:
            logging.info("processing: {}".format(path))
            image = cv2.imread(path, cv2.IMREAD_COLOR)
            if image is None:
                logging.error("read path error: {}. skip it.".format(path))
                continue
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            images_origin.append(image)  # keep for save result
            image = cv2.resize(image, (config["img_w"], config["img_h"]),
                               interpolation=cv2.INTER_LINEAR)
            image = image.astype(np.float32)
            image /= 255.0
            image = np.transpose(image, (2, 0, 1))
            image = image.astype(np.float32)
            images.append(image)
        images = np.asarray(images)
        # images = torch.from_numpy(images).cuda()
        images = torch.from_numpy(images).to(device)

        # inference
        with torch.no_grad():
            outputs = net(images)
            output_list = []
            for i in range(3):
                output_list.append(yolo_losses[i](outputs[i]))
            output = torch.cat(output_list, 1)
            batch_detections = non_max_suppression(
                output,
                config["yolo"]["classes"],
                conf_thres=config["confidence_threshold"],
                nms_thres=0.45)

        # write result images. Draw bounding boxes and labels of detections
        classes = open(config["classes_names_path"],
                       "r").read().split("\n")[:-1]
        if not os.path.isdir("./output/"):
            os.makedirs("./output/")
        for idx, detections in enumerate(batch_detections):
            plt.figure()
            fig, ax = plt.subplots(1)
            ax.imshow(images_origin[idx])
            if detections is not None:
                unique_labels = detections[:, -1].cpu().unique()
                n_cls_preds = len(unique_labels)
                bbox_colors = random.sample(colors, n_cls_preds)
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    color = bbox_colors[int(
                        np.where(unique_labels == int(cls_pred))[0])]
                    # Rescale coordinates to original dimensions
                    ori_h, ori_w = images_origin[idx].shape[:2]
                    pre_h, pre_w = config["img_h"], config["img_w"]
                    box_h = ((y2 - y1) / pre_h) * ori_h
                    box_w = ((x2 - x1) / pre_w) * ori_w
                    y1 = (y1 / pre_h) * ori_h
                    x1 = (x1 / pre_w) * ori_w
                    # Create a Rectangle patch
                    bbox = patches.Rectangle((x1, y1),
                                             box_w,
                                             box_h,
                                             linewidth=2,
                                             edgecolor=color,
                                             facecolor='none')
                    # Add the bbox to the plot
                    ax.add_patch(bbox)
                    # Add label
                    plt.text(x1,
                             y1,
                             s=classes[int(cls_pred)],
                             color='white',
                             verticalalignment='top',
                             bbox={
                                 'color': color,
                                 'pad': 0
                             })
            # Save generated image with detections
            plt.axis('off')
            plt.gca().xaxis.set_major_locator(NullLocator())
            plt.gca().yaxis.set_major_locator(NullLocator())
            plt.savefig('output/{}_{}.jpg'.format(step, idx),
                        bbox_inches='tight',
                        pad_inches=0.0)
            plt.close()
    logging.info("Save all results to ./output/")
예제 #2
0
def train(config):
    config["global_step"] = config.get("start_step", 0)
    is_training = False if config.get("export_onnx") else True

    # Load and initialize network
    net = ModelMain(config, is_training=is_training)
    net.train(is_training)

    # Optimizer and learning rate
    optimizer = _get_optimizer(config, net)
    lr_scheduler = optim.lr_scheduler.StepLR(
        optimizer,
        step_size=config["lr"]["decay_step"],
        gamma=config["lr"]["decay_gamma"])

    # Set data parallel
    net = nn.DataParallel(net)
    # net = net.cuda()
    net = net.to(device)

    # Restore pretrain model
    if config["pretrain_snapshot"]:
        logging.info("Load pretrained weights from {}".format(
            config["pretrain_snapshot"]))
        state_dict = torch.load(config["pretrain_snapshot"])
        net.load_state_dict(state_dict)

    # Only export onnx
    # if config.get("export_onnx"):
    # real_model = net.module
    # real_model.eval()
    # dummy_input = torch.randn(8, 3, config["img_h"], config["img_w"]).cuda()
    # save_path = os.path.join(config["sub_working_dir"], "pytorch.onnx")
    # logging.info("Exporting onnx to {}".format(save_path))
    # torch.onnx.export(real_model, dummy_input, save_path, verbose=False)
    # logging.info("Done. Exiting now.")
    # sys.exit()

    # Evaluate interface
    # if config["evaluate_type"]:
    # logging.info("Using {} to evaluate model.".format(config["evaluate_type"]))
    # evaluate_func = importlib.import_module(config["evaluate_type"]).run_eval
    # config["online_net"] = net

    # YOLO loss with 3 scales
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(
            YOLOLoss(config["yolo"]["anchors"][i], config["yolo"]["classes"],
                     (config["img_w"], config["img_h"])))

    # DataLoader
    dataloader = torch.utils.data.DataLoader(COCODataset(
        config["train_path"], (config["img_w"], config["img_h"]),
        is_training=True),
                                             batch_size=config["batch_size"],
                                             shuffle=True,
                                             num_workers=0,
                                             pin_memory=True)

    # Start the training loop
    logging.info("Start training.")
    for epoch in range(config["epochs"]):
        for step, samples in enumerate(dataloader):
            images, labels = samples["image"], samples["label"]
            start_time = time.time()
            config["global_step"] += 1

            # Forward and backward
            optimizer.zero_grad()
            outputs = net(images)
            losses_name = ["total_loss", "x", "y", "w", "h", "conf", "cls"]
            losses = []
            for _ in range(len(losses_name)):
                losses.append([])
            for i in range(3):
                _loss_item = yolo_losses[i](outputs[i], labels)
                for j, l in enumerate(_loss_item):
                    losses[j].append(l)
            losses = [sum(l) for l in losses]
            # print(losses)
            loss = losses[0]
            loss.backward()
            optimizer.step()

            if step > 0 and step % 10 == 0:
                _loss = loss.item()
                duration = float(time.time() - start_time)
                example_per_second = config["batch_size"] / duration
                lr = optimizer.param_groups[0]['lr']
                logging.info(
                    "epoch [%.3d] iter = %d loss = %.2f example/sec = %.3f lr = %.5f "
                    % (epoch, step, _loss, example_per_second, lr))
                config["tensorboard_writer"].add_scalar(
                    "lr", lr, config["global_step"])
                config["tensorboard_writer"].add_scalar(
                    "example/sec", example_per_second, config["global_step"])
                for i, name in enumerate(losses_name):
                    value = _loss if i == 0 else losses[i]
                    config["tensorboard_writer"].add_scalar(
                        name, value, config["global_step"])

            if step > 0 and step % 1000 == 0:
                # net.train(False)
                _save_checkpoint(net.state_dict(), config)
                # net.train(True)

        lr_scheduler.step()

    # net.train(False)
    _save_checkpoint(net.state_dict(), config)
    # net.train(True)
    logging.info("Bye~")