def build_nasnet_large(images, num_classes, is_training=True, final_endpoint=None, config=None, current_step=None): """Build NASNet Large model for the ImageNet Dataset.""" hparams = (large_imagenet_config() if config is None else copy.deepcopy(config)) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.compat.v1.logging.info( 'A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(a=images, perm=[0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 # If ImageNet, then add an additional two for the stem cells total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='imagenet', final_endpoint=final_endpoint, current_step=current_step)
def build_nasnet_cifar(images, num_classes, is_training=True, config=None): """Build NASNet model for the Cifar Dataset.""" hparams = cifar_config() if config is None else copy.deepcopy(config) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info('A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(images, [0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='cifar')
def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. This function reconstructs the "second half" of the NASNet-A network after the part defined in `_extract_proposal_features`. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name. Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ del scope # Note that we always feed into 2 layers of equal depth # where the first N channels corresponds to previous hidden layer # and the second N channels correspond to the final hidden layer. hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3) # Note that what follows is largely a copy of build_nasnet_large() within # nasnet.py. We are copying to minimize code pollution in slim. # TODO(shlens,skornblith): Determine the appropriate drop path schedule. # For now the schedule is the default (1.0->0.7 over 250,000 train steps). hparams = nasnet.large_imagenet_config() if not self._is_training: hparams.set_hparam('drop_path_keep_prob', 1.0) # Calculate the total number of cells in the network # -- Add 2 for the reduction cells. total_num_cells = hparams.num_cells + 2 # -- And add 2 for the stem cells for ImageNet training. total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) with arg_scope([slim.dropout, nasnet_utils.drop_path], is_training=self._is_training): with arg_scope([slim.batch_norm], is_training=self._train_batch_norm): with arg_scope([ slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim ], data_format=hparams.data_format): # This corresponds to the cell number just past 'Cell_11' used by # by _extract_proposal_features(). start_cell_num = 12 # Note that this number equals: # start_cell_num + 2 stem cells + 1 reduction cell true_cell_num = 15 with slim.arg_scope(nasnet.nasnet_large_arg_scope()): net = _build_nasnet_base(hidden_previous, hidden, normal_cell=normal_cell, reduction_cell=reduction_cell, hparams=hparams, true_cell_num=true_cell_num, start_cell_num=start_cell_num) proposal_classifier_features = net return proposal_classifier_features