예제 #1
0
def forward(inputs, num_outputs, is_training=True, scope=None):
    with tf.variable_scope(scope, 'resnet_v2_50', [inputs], reuse=tf.AUTO_REUSE):
        with slim.arg_scope([slim.batch_norm], is_training=is_training):
            # root_block
            with slim.arg_scope([slim.conv2d],
                                activation_fn=None, normalizer_fn=None):
                net = conv2d_same(inputs, 64, 7, stride=2, scope='conv1')
            net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

            net = resnet_v2_block(
                net, base_depth=64, num_units=3, stride=2, scope='block1')
            net = resnet_v2_block(
                net, base_depth=128, num_units=4, stride=2, scope='block2')
            net = resnet_v2_block(
                net, base_depth=256, num_units=6, stride=2, scope='block3')
            net = resnet_v2_block(
                net, base_depth=512, num_units=3, stride=1, scope='block4')
            net = slim.batch_norm(
                net, activation_fn=tf.nn.relu, scope='postnorm')

            net = slim.conv2d(net, num_outputs, [1, 1],
                              activation_fn=None, normalizer_fn=None,
                              scope='_logits_')

    return net
예제 #2
0
        def _building_block(inputs):
            depth_in = slim.utils.last_dimension(inputs.get_shape(),
                                                 min_rank=4)
            if depth == depth_in:
                shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
            else:
                shortcut = slim.conv2d(inputs,
                                       depth, [1, 1],
                                       stride=stride,
                                       activation_fn=tf.nn.relu6
                                       if use_bounded_activations else None,
                                       scope='shortcut')

            residual = resnet_utils.conv2d_same(inputs,
                                                depth,
                                                3,
                                                stride=1,
                                                rate=rate,
                                                scope='conv1')
            residual = resnet_utils.conv2d_same_act(residual,
                                                    depth,
                                                    3,
                                                    stride=stride,
                                                    rate=rate,
                                                    scope='conv2')

            if use_bounded_activations:
                # Use clip_by_value to simulate bandpass activation.
                residual = tf.clip_by_value(residual, -6.0, 6.0)
                output = tf.nn.relu6(shortcut + residual)
            else:
                output = tf.nn.relu(shortcut + residual)
            return output
예제 #3
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
    """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(inputs,
                                   depth, [1, 1],
                                   stride=stride,
                                   activation_fn=None,
                                   scope='shortcut')

        residual = slim.conv2d(inputs,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1')
        residual = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2')
        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               activation_fn=None,
                               scope='conv3')

        output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections,
                                                sc.original_name_scope, output)
예제 #4
0
def att_resnet_v1(inputs,
                  blocks,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
                  include_root_block=True,
                  spatial_squeeze=True,
                  store_non_strided_activations=False,
                  reuse=None,
                  scope=None):
    with tf.variable_scope(scope, 'att_resnet_v1', [inputs],
                           reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope(
            [slim.conv2d, bottleneck, stack_attention_blocks_dense],
                outputs_collections=end_points_collection):
            with (slim.arg_scope([slim.batch_norm], is_training=is_training)
                  if is_training is not None else NoOpScope()):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = stack_attention_blocks_dense(
                    net, blocks, output_stride, store_non_strided_activations)
                # Convert end_points_collection into a dictionary of end_points.
                end_points = slim.utils.convert_collection_to_dict(
                    end_points_collection)

                if global_pool:
                    # Global average pooling.
                    net = tf.reduce_mean(net, [1, 2],
                                         name='pool5',
                                         keep_dims=True)
                    end_points['global_pool'] = net
                if num_classes:
                    net = slim.conv2d(net,
                                      num_classes, [1, 1],
                                      activation_fn=None,
                                      normalizer_fn=None,
                                      scope='logits')
                    end_points[sc.name + '/logits'] = net
                    if spatial_squeeze:
                        net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                        end_points[sc.name + '/spatial_squeeze'] = net
                    end_points['predictions'] = slim.softmax(
                        net, scope='predictions')
                return net, end_points
        def h1():

            temp = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2')
            return temp
예제 #6
0
def bottleneck(inputs, depth, depth_bottleneck, stride, EPSILON=2.0, middle=False, num_classes=1001, rate=1,
               outputs_collections=None, scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  global preds, side_output

  with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                             normalizer_fn=None, activation_fn=None,
                             scope='shortcut')

    residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           normalizer_fn=None, activation_fn=None,
                           scope='conv3')

    identity_w = strict_identity(residual, EPSILON)
    is_discarded = tf.subtract(1.0, identity_w, 'is_discarded')
    preds.append(is_discarded)

    output = shortcut + residual*identity_w

    if middle:
      side_output = side_branch(output, num_classes)

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.name,
                                            output)
예제 #7
0
def bottleneck_normal(inputs,
                      depth,
                      depth_bottleneck,
                      stride,
                      nr_frames=None,
                      rate=1,
                      outputs_collections=None,
                      scope=None,
                      use_bounded_activations=False,
                      temporal=False):
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(
                inputs,
                depth, [1, 1],
                stride=stride,
                activation_fn=tf.nn.relu6 if use_bounded_activations else None,
                scope='shortcut')

        residual = slim.conv2d(inputs,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1')

        residual = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2')

        if temporal:  # temporal conv
            residual = resnet_utils.conv_temp2(residual,
                                               nr_frames,
                                               scope='conv_temp')

        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               activation_fn=None,
                               scope='conv3')

        if use_bounded_activations:
            # Use clip_by_value to simulate bandpass activation.
            residual = tf.clip_by_value(residual, -6.0, 6.0)
            output = tf.nn.relu6(shortcut + residual)
        else:
            output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections,
                                                sc.original_name_scope, output)
예제 #8
0
def resnet_v2_multiple(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              reuse=None,
              scope=None):
  
  with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.name + '_end_points'
    with slim.arg_scope([slim.conv2d, bottleneck,
                         resnet_utils.stack_blocks_dense],
                        outputs_collections=end_points_collection):
      with slim.arg_scope([slim.batch_norm], is_training=is_training):
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          # We do not include batch normalization or activation functions in
          # conv1 because the first ResNet unit will perform these. Cf.
          # Appendix of [2].
          with slim.arg_scope([slim.conv2d],
                              activation_fn=None, normalizer_fn=None):
            net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
        # This is needed because the pre-activation variant does not have batch
        # normalization or activation functions in the residual unit output. See
        # Appendix of [2].
        net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm')
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
        if num_classes is not None:
          net = slim.conv2d(net, num_classes*3, [1, 1], activation_fn=None,
                            normalizer_fn=None, scope='logits')
        if spatial_squeeze:
          logits = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
        else:
          logits = net
        # pdb.set_trace()
        logits = tf.reshape(logits,(logits.get_shape().as_list()[0],num_classes,-1))
        # Convert end_points_collection into a dictionary of end_points.
        end_points = slim.utils.convert_collection_to_dict(end_points_collection)
        if num_classes is not None:
          end_points['predictions_0'] = slim.softmax(logits[:,:,0], scope='predictions')
          end_points['predictions_1'] = slim.softmax(logits[:,:,1], scope='predictions')
          end_points['predictions_2'] = slim.softmax(logits[:,:,2], scope='predictions')
        return logits, end_points
예제 #9
0
def resnet_v1_pruned(inputs,
              blocks,
              num_classes=None,
              prune_info = None, 
              is_training=True,
              is_local_train = None, 
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              reuse=None,
              scope=None):
  """Generator for v1 ResNet models.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  # print('resnet_v1_pruned scope=', scope)
  with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.name + '_end_points'
    with slim.arg_scope([slim.conv2d, bottleneck, slim.max_pool2d,
                         resnet_utils.stack_blocks_dense_pruned],
                        outputs_collections=end_points_collection):
      with slim.arg_scope([slim.batch_norm], is_training=is_training):
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense_pruned(net, blocks, 
                                                    prune_info=prune_info, 
                                                    is_local_train=is_local_train, 
                                                    output_stride = output_stride)
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
        if num_classes is not None:
          net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                            normalizer_fn=None, scope='logits')
          if spatial_squeeze:
            net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
        # Convert end_points_collection into a dictionary of end_points.
        end_points = slim.utils.convert_collection_to_dict(
            end_points_collection)
        if num_classes is not None:
          end_points['predictions'] = slim.softmax(net, scope='predictions')
        return net, end_points
예제 #10
0
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, scope=None):
    """Bottleneck residual unit variant with BN before convolutions.
    Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    scope: Optional variable_scope.
    Returns:
        The ResNet unit's output.
    """
    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]):
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs,
                                 activation_fn=tf.nn.relu,
                                 scope='preact')
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact,
                                   depth, [1, 1],
                                   stride=stride,
                                   normalizer_fn=None,
                                   activation_fn=None,
                                   scope='shortcut')

        residual = slim.conv2d(preact,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1')

        residual = conv2d_same(residual,
                               depth_bottleneck,
                               3,
                               stride=stride,
                               rate=rate,
                               scope='conv2')

        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               normalizer_fn=None,
                               activation_fn=None,
                               scope='conv3')

        output = shortcut + residual

    return output
예제 #11
0
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
               outputs_collections=None, scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                             normalizer_fn=None, activation_fn=None,
                             scope='shortcut')

    residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           normalizer_fn=None, activation_fn=None,
                           scope='conv3')

    output = shortcut + residual

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.original_name_scope,
                                            output)
예제 #12
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              reuse=None,
              scope=None):

    with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope(
            [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with slim.arg_scope([slim.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with slim.arg_scope([slim.conv2d],
                                        activation_fn=None,
                                        normalizer_fn=None):
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = slim.batch_norm(net,
                                      activation_fn=tf.nn.relu,
                                      scope='postnorm')
예제 #13
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):

    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs,
                                 activation_fn=tf.nn.relu,
                                 scope='preact')
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact,
                                   depth, [1, 1],
                                   stride=stride,
                                   normalizer_fn=None,
                                   activation_fn=None,
                                   scope='shortcut')

        residual = slim.conv2d(preact,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1')
        residual = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2')
        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               normalizer_fn=None,
                               activation_fn=None,
                               scope='conv3')

        output = shortcut + residual

        return slim.utils.collect_named_outputs(outputs_collections, sc.name,
                                                output)
예제 #14
0
  def testConv2DSameEven(self):
    n, n2 = 4, 2

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.get_variable('Conv/weights', initializer=w)
    tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.to_float([[14, 28, 43, 26],
                               [28, 48, 66, 37],
                               [43, 66, 84, 46],
                               [26, 37, 46, 22]])
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.to_float([[14, 43],
                               [43, 84]])
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = tf.to_float([[48, 37],
                               [37, 22]])
    y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1])

    with self.test_session() as sess:
      try:
        sess.run(tf.global_variables_initializer())
      except AttributeError:
        sess.run(tf.initialize_all_variables())
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())
예제 #15
0
def split(inputs, unit_depth, stride, rate=1):
    """
    The split structure in Figure 3b of the paper. It takes an input tensor. Conv it by [1, 1,
    64] filter, and then conv the result by [3, 3, 64]. Return the
    final resulted tensor, which is in shape of [batch_size, input_height, input_width, 64]
    :param inputs: 4D tensor in shape of [batch_size, input_height, input_width,
    input_channel]
    :param unit_depth: the depth of each split
    :param stride: int. 1 or 2. If want to shrink the image size, then stride = 2
    :return: 4D tensor in shape of [batch_size, input_height, input_width, input_channel/64]
    """

    num_filter = unit_depth

    with tf.variable_scope('bneck_reduce_size'):
        conv = slim.conv2d(inputs, num_filter, [1, 1], stride=1)
    with tf.variable_scope('bneck_conv'):
        conv = resnet_utils.conv2d_same(conv, num_filter, 3, stride=stride, rate=rate)

    return conv
예제 #16
0
def bottleneck_c(inputs, unit_depth, cardinality, stride, rate=1,
               outputs_collections=None, scope=None):
    with tf.variable_scope(scope, 'bottleneck_resnext_c', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
        depth = unit_depth * cardinality * 2
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                                   normalizer_fn=None, activation_fn=None,
                                   scope='shortcut')

        net = slim.conv2d(inputs, unit_depth*cardinality, [1, 1], stride=1, scope='conv1')
        net = resnet_utils.conv2d_same(net, unit_depth*cardinality, 3, stride=stride, rate=rate, scope='grouped_conv2')
        net = slim.conv2d(net, depth, [1, 1], stride=1, scope='conv3')
        net = shortcut + net
        output = tf.nn.relu(net)
        return slim.utils.collect_named_outputs(outputs_collections,
                                                sc.original_name_scope,
                                                output)
예제 #17
0
  def testConv2DSameEven(self):
    n, n2 = 4, 2

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.get_variable('Conv/weights', initializer=w)
    tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.to_float([[14, 28, 43, 26],
                               [28, 48, 66, 37],
                               [43, 66, 84, 46],
                               [26, 37, 46, 22]])
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.to_float([[14, 43],
                               [43, 84]])
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = tf.to_float([[48, 37],
                               [37, 22]])
    y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1])

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())
예제 #18
0
  def testConv2DSameOdd(self):
    n, n2 = 5, 3

    # Input image.
    x = create_test_input(1, n, n, 1)

    # Convolution kernel.
    w = create_test_input(1, 3, 3, 1)
    w = tf.reshape(w, [3, 3, 1, 1])

    tf.compat.v1.get_variable('Conv/weights', initializer=w)
    tf.compat.v1.get_variable('Conv/biases', initializer=tf.zeros([1]))
    tf.compat.v1.get_variable_scope().reuse_variables()

    y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
    y1_expected = tf.cast([[14, 28, 43, 58, 34],
                               [28, 48, 66, 84, 46],
                               [43, 66, 84, 102, 55],
                               [58, 84, 102, 120, 64],
                               [34, 46, 55, 64, 30]], dtype=tf.float32)
    y1_expected = tf.reshape(y1_expected, [1, n, n, 1])

    y2 = resnet_utils.subsample(y1, 2)
    y2_expected = tf.cast([[14, 43, 34],
                               [43, 84, 55],
                               [34, 55, 30]], dtype=tf.float32)
    y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])

    y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
    y3_expected = y2_expected

    y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
    y4_expected = y2_expected

    with self.test_session() as sess:
      sess.run(tf.compat.v1.global_variables_initializer())
      self.assertAllClose(y1.eval(), y1_expected.eval())
      self.assertAllClose(y2.eval(), y2_expected.eval())
      self.assertAllClose(y3.eval(), y3_expected.eval())
      self.assertAllClose(y4.eval(), y4_expected.eval())
예제 #19
0
def bottleneck_pruned(inputs, 
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False,
               prune_unit=None,
               is_local_train = None):
  """Bottleneck residual unit variant with BN after convolutions.
  """
  # if it is local train, choose the inputs as from the original graph's input
  # inputs = tf.cond(is_local_train, lambda: prune_unit['inputs'], lambda: inputs)
  if is_local_train and prune_unit['inputs']!=None:
    inputs = prune_unit['inputs']

  with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(
          inputs,
          depth, [1, 1],
          stride=stride,
          activation_fn=tf.nn.relu6 if use_bounded_activations else None,
          scope='shortcut')

    prune_layers = prune_unit['prune_layers']
    # print('HG: prune_layers=', prune_layers)
    # print('HG: depth_bottleneck=', depth_bottleneck)

    # Trial 1: still use the depth of original network so that the other variables can easily restored from the 
    # pretrained graph. The variables related to the pruned layers could be reassigned values later with validate_shape = false
    # then the shape of those variables could be changed to the shape of assigned values. This trial gives error since it does not 
    # really change the shape of the variables. Variables's shape are set once they are created. 
    # pruned_depth = depth_bottleneck 
    pruned_depth = int(depth_bottleneck*prune_layers[1]) if (1 in prune_layers) else depth_bottleneck

    residual = slim.conv2d(inputs, pruned_depth, [1, 1], stride=1,
                           scope='conv1')
    # print('HG: conv1=', residual)
    pruned_depth = int(depth_bottleneck*prune_layers[2]) if (2 in prune_layers) else depth_bottleneck
    residual = resnet_utils.conv2d_same(residual, pruned_depth, 3, stride,
                                        rate=rate, scope='conv2')
    # print('HG: conv2=', residual)
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           activation_fn=None, scope='conv3')
    # print('HG: conv3=', residual)

    if use_bounded_activations:
      # Use clip_by_value to simulate bandpass activation.
      residual = tf.clip_by_value(residual, -6.0, 6.0)
      output = tf.nn.relu6(shortcut + residual)
    else:
      output = tf.nn.relu(shortcut + residual)

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.original_name_scope,
                                            output)
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              store_non_strided_activations=False,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks.
      If 0 or None, we return the features before the logit layer.
    is_training: whether batch_norm layers are in training mode. If this is set
      to None, the callers can specify slim.batch_norm's is_training parameter
      from an outer slim.arg_scope.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
        To use this parameter, the input images must be smaller than 300x300
        pixels, in which case the output logit layer does not contain spatial
        information and can be removed.
    store_non_strided_activations: If True, we compute non-strided (undecimated)
      activations at the last unit of each block and store them in the
      `outputs_collections` before subsampling them. This gives us access to
      higher resolution intermediate activations which are useful in some
      dense prediction problems but increases 4x the computation and memory cost
      at the last unit of each block.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is 0 or None,
      then net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes a non-zero integer, net contains the
      pre-softmax activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope(
            [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with (slim.arg_scope([slim.batch_norm], is_training=is_training)
                  if is_training is not None else NoOpScope()):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = resnet_utils.stack_blocks_dense(
                    net, blocks, output_stride, store_non_strided_activations)

                # Convert end_points_collection into a dictionary of end_points.
                end_points = slim.utils.convert_collection_to_dict(
                    end_points_collection)

                return net, end_points
예제 #21
0
def deeplabv3(inputs,
              num_classes,
              depth=101,
              aspp=True,
              reuse=None,
              is_training=True):
    """DeepLabV3
  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The number of layers of the ResNet.
    aspp: Whether to use ASPP module, if True, will use 4 blocks with 
      multi_grid=(1,2,4), if False, will use 7 blocks with multi_grid=(1,2,1).
    reuse: Whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
    end_points: A dictionary from components of the network to the 
      corresponding activation.
  """
    if aspp:
        multi_grid = (1, 2, 4)
    else:
        multi_grid = (1, 2, 1)
    scope = 'resnet_v1_{}'.format(depth)
    with tf.variable_scope(scope, [inputs], reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope(
                resnet_arg_scope(weight_decay=args.weight_decay,
                                 batch_norm_decay=args.bn_weight_decay)):
            with slim.arg_scope([slim.conv2d, bottleneck],
                                outputs_collections=end_points_collection):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

                    with tf.variable_scope('block1', [net]) as sc:
                        base_depth = 64
                        for i in range(2):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        with tf.variable_scope('unit_3', values=[net]):
                            net = bottleneck(net,
                                             depth=base_depth * 4,
                                             depth_bottleneck=base_depth,
                                             stride=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)
                        print(net)

                    with tf.variable_scope('block2', [net]) as sc:
                        base_depth = 128
                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        with tf.variable_scope('unit_4', values=[net]):
                            net = bottleneck(net,
                                             depth=base_depth * 4,
                                             depth_bottleneck=base_depth,
                                             stride=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block3', [net]) as sc:
                        base_depth = 256

                        num_units = 6
                        if depth == 101:
                            num_units = 23
                        elif depth == 152:
                            num_units = 36

                        for i in range(num_units):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block4', [net]) as sc:
                        base_depth = 512

                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1,
                                                 rate=2 * multi_grid[i])
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    if aspp:
                        # parallel module with atrous convolution(ASPP)
                        with tf.variable_scope('aspp', [net]) as sc:
                            aspp_list = []
                            branch_1 = slim.conv2d(net,
                                                   256, [1, 1],
                                                   stride=1,
                                                   scope='1x1conv')
                            branch_1 = slim.utils.collect_named_outputs(
                                end_points_collection, sc.name, branch_1)
                            aspp_list.append(branch_1)

                            for i in range(3):
                                branch_2 = slim.conv2d(
                                    net,
                                    256, [3, 3],
                                    stride=1,
                                    rate=6 * (i + 1),
                                    scope='3x3conv_rate{}'.format(6 * (i + 1)))
                                branch_2 = slim.utils.collect_named_outputs(
                                    end_points_collection, sc.name, branch_2)
                                aspp_list.append(branch_2)

                            # aspp = tf.add_n(aspp_list)
                            # aspp = slim.utils.collect_named_outputs(end_points_collection, sc.name, aspp)

                            with tf.variable_scope('image-level', [net]) as sc:
                                """Image Pooling
                  See ParseNet: Looking Wider to See Better
                  """
                                pooled = tf.reduce_mean(net, [1, 2],
                                                        name='avg_pool',
                                                        keepdims=True)
                                pooled = slim.utils.collect_named_outputs(
                                    end_points_collection, sc.name, pooled)

                                pooled = slim.conv2d(pooled,
                                                     256, [1, 1],
                                                     stride=1,
                                                     scope='1x1conv')
                                pooled = slim.utils.collect_named_outputs(
                                    end_points_collection, sc.name, pooled)

                                pooled = tf.image.resize_bilinear(
                                    pooled,
                                    tf.shape(net)[1:3])
                                aspp_list.append(pooled)

                                pooled = slim.utils.collect_named_outputs(
                                    end_points_collection, sc.name, pooled)

                            with tf.variable_scope('fusion',
                                                   [aspp_list, pooled]) as sc:

                                net = tf.concat(aspp_list, 3)
                                net = slim.utils.collect_named_outputs(
                                    end_points_collection, sc.name, net)

                                net = slim.conv2d(net,
                                                  256, [1, 1],
                                                  stride=1,
                                                  scope='1x1conv')
                                net = slim.utils.collect_named_outputs(
                                    end_points_collection, sc.name, net)
                    else:
                        # cascaded module with atrous convolution
                        with tf.variable_scope('block5', [net]) as sc:
                            base_depth = 512

                            for i in range(3):
                                with tf.variable_scope('unit_%d' % (i + 1),
                                                       values=[net]):
                                    net = bottleneck(
                                        net,
                                        depth=base_depth * 4,
                                        depth_bottleneck=base_depth,
                                        stride=1,
                                        rate=4 * multi_grid[i])
                            net = slim.utils.collect_named_outputs(
                                end_points_collection, sc.name, net)

                        with tf.variable_scope('block6', [net]) as sc:
                            base_depth = 512

                            for i in range(3):
                                with tf.variable_scope('unit_%d' % (i + 1),
                                                       values=[net]):
                                    net = bottleneck(
                                        net,
                                        depth=base_depth * 4,
                                        depth_bottleneck=base_depth,
                                        stride=1,
                                        rate=8 * multi_grid[i])
                            net = slim.utils.collect_named_outputs(
                                end_points_collection, sc.name, net)

                        with tf.variable_scope('block7', [net]) as sc:
                            base_depth = 512

                            for i in range(3):
                                with tf.variable_scope('unit_%d' % (i + 1),
                                                       values=[net]):
                                    net = bottleneck(
                                        net,
                                        depth=base_depth * 4,
                                        depth_bottleneck=base_depth,
                                        stride=1,
                                        rate=16 * multi_grid[i])
                            net = slim.utils.collect_named_outputs(
                                end_points_collection, sc.name, net)


#           inputs_size = tf.shape(inputs)[1:3]
#           with tf.variable_scope('upsampling_logits',[net]) as sc:
#             net = slim.conv2d(net, num_classes, [1,1], stride=1,
#               activation_fn=None, normalizer_fn=None)
#             net = tf.image.resize_bilinear(net, inputs_size, name='upsample')
#             net = slim.utils.collect_named_outputs(end_points_collection,
#             sc.name, net)
#
#           net = tf.identity(net,"semantic")

                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)

                    inputs_size = tf.shape(inputs)[1:3]
                    with tf.variable_scope("decoder"):
                        with slim.arg_scope(
                                resnet_arg_scope(
                                    weight_decay=args.weight_decay,
                                    batch_norm_decay=args.bn_weight_decay)):
                            with slim.arg_scope([slim.batch_norm],
                                                is_training=is_training):
                                with tf.variable_scope("low_level_features"):
                                    low_level_features = end_points[
                                        scope +
                                        '/block1/unit_3/bottleneck_v1/conv1']
                                    low_level_features = slim.conv2d(
                                        low_level_features,
                                        48, [1, 1],
                                        stride=1,
                                        scope='conv_1x1')
                                    low_level_features_size = tf.shape(
                                        low_level_features)[1:3]

                                with tf.variable_scope("upsampling_logits"):
                                    net = tf.image.resize_bilinear(
                                        net,
                                        low_level_features_size,
                                        name='upsample_1')
                                    net = tf.concat([net, low_level_features],
                                                    axis=3,
                                                    name='concat')
                                    net = slim.conv2d(net,
                                                      256, [3, 3],
                                                      stride=1,
                                                      scope='conv_3x3_1')
                                    net = slim.conv2d(net,
                                                      256, [3, 3],
                                                      stride=1,
                                                      scope='conv_3x3_2')
                                    net = slim.conv2d(net,
                                                      num_classes, [1, 1],
                                                      activation_fn=None,
                                                      normalizer_fn=None,
                                                      scope='conv_1x1')
                                    net = tf.image.resize_bilinear(
                                        net, inputs_size, name='upsample_2')

                    net = tf.identity(net, "semantic")

                    return net, end_points
예제 #22
0
 def _root_block(net):
     if depthwise_convolution:
         if sparse_dense_branch:
             sparse_list = []
             dense_list = []
             for i, sparsity in enumerate(sparsity_type):
                 subnet = net[:, :, :, i:(i + 1)]
                 if sparsity:
                     sparse_list.append(subnet)
                 else:
                     dense_list.append(subnet)
                 sparse_net = tf.concat(sparse_list, axis=3)
                 dense_net = tf.concat(dense_list, axis=3)
                 sparse_net = resnet_utils.conv2d_same(
                     sparse_net,
                     32,
                     3,
                     stride=1,
                     scope='sparse_conv1')
                 dense_net = resnet_utils.conv2d_same(
                     dense_net,
                     16,
                     3,
                     stride=1,
                     scope='dense_conv1')
                 net = tf.concat([sparse_net, dense_net],
                                 axis=3)
                 net = resnet_utils.conv2d_same(net,
                                                64,
                                                3,
                                                stride=1,
                                                scope='conv3')
                 net = resnet_utils.conv2d_same(
                     net,
                     64,
                     3,
                     stride=root_downsampling_rate,
                     scope='conv4')
         else:
             net = slim.separable_conv2d(net,
                                         num_outputs=64,
                                         kernel_size=3,
                                         depth_multiplier=8,
                                         scope='conv1_1')
             net = resnet_utils.conv2d_same(
                 net,
                 64,
                 3,
                 stride=root_downsampling_rate,
                 scope='conv1_2')
     else:
         net = resnet_utils.conv2d_same(net,
                                        32,
                                        3,
                                        stride=1,
                                        scope='conv1_1')
         net = resnet_utils.conv2d_same(
             net,
             64,
             3,
             stride=root_downsampling_rate,
             scope='conv1_2')
     return net
예제 #23
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False,
               initializers=None,
               insert_shift=False,
               split_model=False):
    """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
    use_bounded_activations: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.
    initializers <MODIFICATION>: Weight and bias initializers for the included conv blocks
    insert_shift <MODIFICATION>: If true, inserts shift operation in front of every first conv1x1 within a block.
    split_model <MODIFICATION>: (overrides "shift") If true, inserts placeholder in front of every first conv1x1 within a block. This allows for insertion of shift outside of TF.

  Returns:
    The ResNet unit's output.
  """
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        fake_inputs = None
        fake_shortcut = None
        if split_model:
            shift_input = tf.identity(inputs, 'prev_conv_output')
            #shortcut_input = tf.identity(shortcut, 'prev_shortcut_output')
            shortcut_input = tf.identity(inputs, 'prev_shortcut_output')
            fake_inputs = tf.placeholder(tf.float32,
                                         shape=inputs.get_shape(),
                                         name='conv_input')
            #fake_shortcut = tf.placeholder(tf.float32, shape=shortcut.get_shape(), name='shortcut_input')
            fake_shortcut = tf.placeholder(tf.float32,
                                           shape=inputs.get_shape(),
                                           name='shortcut_input')
        elif insert_shift:
            shift_input = tf.identity(inputs, 'prev_conv_output')
            #shortcut_input = tf.identity(shortcut, 'prev_shortcut_output')
            shortcut_input = tf.identity(inputs, 'prev_shortcut_output')

            fold = inputs.get_shape()[-1] // 8
            shifted = tf.Variable(tf.zeros_like(inputs))

            initial_print = tf.print("initial: ", shifted)
            shift_left = tf.assign(shifted[:-1, :, :, :fold],
                                   shift_input[1:, :, :, :fold])
            shift_right = tf.assign(shifted[1:, :, :, fold:2 * fold],
                                    shift_input[:-1, :, :, fold:2 * fold])
            shift_copy = tf.assign(shifted[:, :, :, 2 * fold:],
                                   shift_input[:, :, :, 2 * fold:])
            final_print = tf.print("final: ", shifted)

            with tf.control_dependencies([shift_left, shift_right,
                                          shift_copy]):
                fake_inputs = tf.identity(shifted, 'shifted_input')
            fake_shortcut = shortcut_input
        else:
            fake_inputs = inputs
            #fake_shortcut = shortcut
            fake_shortcut = inputs

        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            #shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
            shortcut = resnet_utils.subsample(fake_shortcut, stride,
                                              'shortcut')
        else:
            shortcut = slim.conv2d(
                #inputs,
                fake_shortcut,
                depth,
                [1, 1],
                stride=stride,
                activation_fn=tf.nn.relu6 if use_bounded_activations else None,
                scope='shortcut',
                **initializers["shortcut"])

        residual = slim.conv2d(fake_inputs,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1',
                               **initializers["conv1"])
        residual = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2',
                                            **initializers["conv2"])
        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               activation_fn=None,
                               scope='conv3',
                               **initializers["conv3"])

        if use_bounded_activations:
            # Use clip_by_value to simulate bandpass activation.
            residual = tf.clip_by_value(residual, -6.0, 6.0)
            #output = tf.nn.relu6(fake_shortcut + residual)
            output = tf.nn.relu6(shortcut + residual)
        else:
            #output = tf.nn.relu(fake_shortcut + residual)
            output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections, sc.name,
                                                output)
예제 #24
0
파일: resnet_v1.py 프로젝트: Natlem/models
def bottleneck_pruned(inputs,
                      convDict,
                      stride,
                      rate=1,
                      outputs_collections=None,
                      scope=None,
                      use_bounded_activations=False):
    """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
    use_bounded_activations: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.

  Returns:
    The ResNet unit's output.
  """
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if convDict['shortcut'] == depth_in:  #Used to be depth
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(
                inputs,
                convDict['shortcut'],  #Used to be depth
                [1, 1],
                stride=stride,
                activation_fn=tf.nn.relu6 if use_bounded_activations else None,
                scope='shortcut')

        residual = slim.conv2d(
            inputs, convDict['conv1'], [1, 1], stride=1,
            scope='conv1')  #convDict['conv1'] used to be depth_bottleneck

        residual = resnet_utils.conv2d_same(
            residual, convDict['conv2'], 3, stride, rate=rate,
            scope='conv2')  #convDict['conv2'] used to be depth_bottleneck
        residual = slim.conv2d(
            residual,
            convDict['conv3'], [1, 1],
            stride=1,
            activation_fn=None,
            scope='conv3')  #convDict['conv3'] used to be depth

        if use_bounded_activations:
            # Use clip_by_value to simulate bandpass activation.
            residual = tf.clip_by_value(residual, -6.0, 6.0)
            output = tf.nn.relu6(shortcut + residual)
        else:
            output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections, sc.name,
                                                output)
예제 #25
0
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=False,
              reuse=None,
              scope=None):
  """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
  with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
    end_points_collection = sc.name + '_end_points'
    with slim.arg_scope([slim.conv2d, bottleneck,
                         resnet_utils.stack_blocks_dense],
                        outputs_collections=end_points_collection):
      with slim.arg_scope([slim.batch_norm], is_training=is_training):
        net = inputs
        if include_root_block:
          if output_stride is not None:
            if output_stride % 4 != 0:
              raise ValueError('The output_stride needs to be a multiple of 4.')
            output_stride /= 4
          net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
          net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
        net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
        if num_classes is not None:
          net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                            normalizer_fn=None, scope='logits')
        if spatial_squeeze:
          logits = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
        else:
          logits = net
        # Convert end_points_collection into a dictionary of end_points.
        end_points = slim.utils.convert_collection_to_dict(
            end_points_collection)
        if num_classes is not None:
          end_points['predictions'] = slim.softmax(logits, scope='predictions')
        return logits, end_points
예제 #26
0
def resnet_twostream_inter(inputs_depth,
                           blocks_depth,
                           inputs_rgb,
                           blocks_rgb,
                           nr_frames,
                           num_classes=None,
                           is_training=True,
                           global_pool=True,
                           output_stride=None,
                           include_root_block=True,
                           spatial_squeeze=True,
                           reuse=None,
                           scope_depth=None,
                           scope_rgb=None,
                           depth_training=True):
    # depth / hallucination injects signal into rgb
    # depth stream
    with tf.device('/gpu:0'):
        inputs = inputs_depth
        scope = scope_depth
        bottleneck = bottleneck_normal
        blocks = blocks_depth
        with tf.variable_scope(scope, 'resnet_v1', [inputs],
                               reuse=reuse) as sc:
            end_points_collection = sc.name + '_end_points'
            with slim.arg_scope(
                [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                    outputs_collections=end_points_collection):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=depth_training):
                    net = inputs
                    if include_root_block:
                        if output_stride is not None:
                            if output_stride % 4 != 0:
                                raise ValueError(
                                    'The output_stride needs to be a multiple of 4.'
                                )
                            output_stride /= 4
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                        net = slim.max_pool2d(net, [3, 3],
                                              stride=2,
                                              scope='pool1')
                    net = resnet_utils.stack_blocks_dense(
                        net, blocks, nr_frames, output_stride)
                    if global_pool:
                        net = tf.reduce_mean(net, [1, 2],
                                             name='pool5',
                                             keep_dims=True)
                    if num_classes is not None:
                        net = slim.conv2d(net,
                                          num_classes, [1, 1],
                                          activation_fn=None,
                                          normalizer_fn=None,
                                          scope='logits')
                        if spatial_squeeze:
                            net = tf.squeeze(net, [1, 2],
                                             name='SpatialSqueeze')
                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)
                    if num_classes is not None:
                        end_points['predictions'] = slim.softmax(
                            net, scope='predictions')
                    net_depth = net
                    end_points_depth = end_points

    end_points_to_pass = {}
    end_points_to_pass[scope_depth +
                       '/block1/unit_1/bottleneck_v1'] = end_points_depth[
                           scope_depth + '/block1/unit_1/bottleneck_v1']
    end_points_to_pass[scope_depth +
                       '/block2/unit_1/bottleneck_v1'] = end_points_depth[
                           scope_depth + '/block2/unit_1/bottleneck_v1']
    end_points_to_pass[scope_depth +
                       '/block3/unit_1/bottleneck_v1'] = end_points_depth[
                           scope_depth + '/block3/unit_1/bottleneck_v1']
    end_points_to_pass[scope_depth +
                       '/block4/unit_1/bottleneck_v1'] = end_points_depth[
                           scope_depth + '/block4/unit_1/bottleneck_v1']

    # rgb stream
    with tf.device('/gpu:1'):
        inputs = inputs_rgb
        scope = scope_rgb
        bottleneck = bottleneck_injected
        blocks = blocks_rgb
        with tf.variable_scope(scope, 'resnet_v1', [inputs],
                               reuse=reuse) as sc:
            end_points_collection = sc.name + '_end_points'
            with slim.arg_scope([
                    slim.conv2d, bottleneck,
                    resnet_utils.stack_blocks_dense_injected
            ],
                                outputs_collections=end_points_collection):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    if include_root_block:
                        if output_stride is not None:
                            if output_stride % 4 != 0:
                                raise ValueError(
                                    'The output_stride needs to be a multiple of 4.'
                                )
                            output_stride /= 4
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                        net = slim.max_pool2d(net, [3, 3],
                                              stride=2,
                                              scope='pool1')
                    net = resnet_utils.stack_blocks_dense_injected(
                        net, blocks, nr_frames, end_points_to_pass,
                        'resnet_v1_50_depth/', output_stride)
                    if global_pool:
                        net = tf.reduce_mean(net, [1, 2],
                                             name='pool5',
                                             keep_dims=True)
                    if num_classes is not None:
                        net = slim.conv2d(net,
                                          num_classes, [1, 1],
                                          activation_fn=None,
                                          normalizer_fn=None,
                                          scope='logits')
                        if spatial_squeeze:
                            net = tf.squeeze(net, [1, 2],
                                             name='SpatialSqueeze')
                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)
                    if num_classes is not None:
                        end_points['predictions'] = slim.softmax(
                            net, scope='predictions')
                    net_rgb = net
                    end_points_rgb = end_points

    return net_depth, end_points_depth, net_rgb, end_points_rgb
예제 #27
0
def resnet_one_stream(inputs,
                      blocks,
                      nr_frames,
                      num_classes=None,
                      is_training=True,
                      global_pool=True,
                      output_stride=None,
                      include_root_block=True,
                      spatial_squeeze=True,
                      reuse=None,
                      scope=None,
                      gpu_id='/gpu:0'):
    bottleneck = bottleneck_normal
    with tf.device(gpu_id):
        with tf.variable_scope(scope, 'resnet_v1', [inputs],
                               reuse=reuse) as sc:
            end_points_collection = sc.name + '_end_points'
            with slim.arg_scope(
                [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                    outputs_collections=end_points_collection):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    if include_root_block:
                        if output_stride is not None:
                            if output_stride % 4 != 0:
                                raise ValueError(
                                    'The output_stride needs to be a multiple of 4.'
                                )
                            output_stride /= 4
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                        net = slim.max_pool2d(net, [3, 3],
                                              stride=2,
                                              scope='pool1')
                    net = resnet_utils.stack_blocks_dense(
                        net, blocks, nr_frames, output_stride)
                    if global_pool:
                        net = tf.reduce_mean(net, [1, 2],
                                             name='pool5',
                                             keep_dims=True)
                    last_pool = net
                    if num_classes is not None:
                        net = slim.conv2d(net,
                                          num_classes, [1, 1],
                                          activation_fn=None,
                                          normalizer_fn=None,
                                          scope='logits')
                        if spatial_squeeze:
                            net = tf.squeeze(net, [1, 2],
                                             name='SpatialSqueeze')
                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)
                    if num_classes is not None:
                        end_points['predictions'] = slim.softmax(
                            net, scope='predictions')
                    end_points['last_pool'] = last_pool
    return net, end_points
예제 #28
0
def bottleneck_injected(inputs,
                        depth,
                        depth_bottleneck,
                        stride,
                        nr_frames=None,
                        rate=1,
                        outputs_collections=None,
                        scope=None,
                        use_bounded_activations=False,
                        temporal=False,
                        multiplier=None,
                        net_before_relu=None,
                        unit_id=-1):
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(
                inputs,
                depth, [1, 1],
                stride=stride,
                activation_fn=tf.nn.relu6 if use_bounded_activations else None,
                scope='shortcut')

        if temporal:
            # if unit x which coincides with temporal conv and depth / OF injection,
            # multiply feature maps
            residual_mult = tf.multiply(net_before_relu, multiplier)
            inputs = inputs + residual_mult

        residual = slim.conv2d(inputs,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1')

        residual = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2')

        if temporal:  # temporal conv
            residual = resnet_utils.conv_temp2(residual,
                                               nr_frames,
                                               scope='conv_temp')

        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               activation_fn=None,
                               scope='conv3')

        if use_bounded_activations:
            # Use clip_by_value to simulate bandpass activation.
            residual = tf.clip_by_value(residual, -6.0, 6.0)
            output = tf.nn.relu6(shortcut + residual)
        else:
            if unit_id == 0:
                output_before_relu = shortcut + residual
                output = tf.nn.relu(shortcut + residual)
                return slim.utils.collect_named_outputs(
                    outputs_collections, sc.original_name_scope,
                    output), output_before_relu
            else:
                output = tf.nn.relu(shortcut + residual)
                return slim.utils.collect_named_outputs(
                    outputs_collections, sc.original_name_scope, output)
예제 #29
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False):
  """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
    use_bounded_activations: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(
          inputs,
          depth, [1, 1],
          stride=stride,
          activation_fn=tf.nn.relu6 if use_bounded_activations else None,
          scope='shortcut')

    residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           activation_fn=None, scope='conv3')

    if use_bounded_activations:
      # Use clip_by_value to simulate bandpass activation.
      residual = tf.clip_by_value(residual, -6.0, 6.0)
      output = tf.nn.relu6(shortcut + residual)
    else:
      output = tf.nn.relu(shortcut + residual)

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.name,
                                            output)
예제 #30
0
def deeplabv2(inputs,
              num_classes,
              depth=50,
              large_rate=True,
              reuse=None,
              is_training=True):
    """DeepLabV3
  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The number of layers of the ResNet.
    aspp: Whether to use ASPP module, if True, will use 4 blocks with 
      multi_grid=(1,2,4), if False, will use 7 blocks with multi_grid=(1,2,1).
    reuse: Whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
    end_points: A dictionary from components of the network to the 
      corresponding activation.
  """
    if large_rate:
        multi_grid = (6, 12, 18, 24)
    else:
        multi_grid = (2, 4, 8, 12)
    scope = 'resnet_v1_{}'.format(depth)
    with tf.variable_scope(scope, [inputs], reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope(
                resnet_arg_scope(weight_decay=args.weight_decay,
                                 batch_norm_decay=args.bn_weight_decay)):
            with slim.arg_scope([slim.conv2d, bottleneck],
                                outputs_collections=end_points_collection):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

                    with tf.variable_scope('block1', [net]) as sc:
                        base_depth = 64
                        for i in range(2):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        with tf.variable_scope('unit_3', values=[net]):
                            net = bottleneck(net,
                                             depth=base_depth * 4,
                                             depth_bottleneck=base_depth,
                                             stride=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block2', [net]) as sc:
                        base_depth = 128
                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1)
                        with tf.variable_scope('unit_4', values=[net]):
                            net = bottleneck(net,
                                             depth=base_depth * 4,
                                             depth_bottleneck=base_depth,
                                             stride=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block3', [net]) as sc:
                        base_depth = 256

                        num_units = 6
                        if depth == 101:
                            num_units = 23
                        elif depth == 152:
                            num_units = 36

                        for i in range(num_units):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1,
                                                 rate=2)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('block4', [net]) as sc:
                        base_depth = 512

                        for i in range(3):
                            with tf.variable_scope('unit_%d' % (i + 1),
                                                   values=[net]):
                                net = bottleneck(net,
                                                 depth=base_depth * 4,
                                                 depth_bottleneck=base_depth,
                                                 stride=1,
                                                 rate=4)
                        net = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, net)

                    with tf.variable_scope('aspp', [net]) as sc:
                        aspp_list = []
                        for i in range(4):
                            branch_2 = slim.conv2d(
                                net,
                                num_classes, [3, 3],
                                stride=1,
                                rate=multi_grid[i],
                                activation_fn=None,
                                normalizer_fn=None,
                                scope='3x3conv_rate{}'.format(multi_grid[i]))
                            branch_2 = slim.utils.collect_named_outputs(
                                end_points_collection, sc.name, branch_2)
                            aspp_list.append(branch_2)

                        aspp = tf.add_n(aspp_list, name='fc1_voc12')
                        aspp = slim.utils.collect_named_outputs(
                            end_points_collection, sc.name, aspp)

                    inputs_size = tf.shape(inputs)[1:3]
                    with tf.variable_scope('upsampling_logits', [net]) as sc:
                        net = tf.image.resize_bilinear(aspp,
                                                       inputs_size,
                                                       name='upsample')

                    net = tf.identity(net, "semantic")

                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)

                    return net, end_points
예제 #31
0
파일: resnet_v1.py 프로젝트: tathey1/models
def resnet_v1_pathology(inputs,
                        blocks,
                        num_classes=None,
                        is_training=True,
                        global_pool=True,
                        output_stride=None,
                        include_root_block=True,
                        spatial_squeeze=True,
                        store_non_strided_activations=False,
                        reuse=None,
                        scope=None):
    with tf.variable_scope(scope, 'resnet_v1_pathology', [inputs],
                           reuse=reuse) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        with slim.arg_scope(
            [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with (slim.arg_scope([slim.batch_norm], is_training=is_training)
                  if is_training is not None else NoOpScope()):
                net = inputs
                num_images = net.shape[0]
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    #tiling
                    net = _tile_images_2res(net, num_images)

                    net = resnet_utils.conv2d_same(net,
                                                   64,
                                                   7,
                                                   stride=2,
                                                   scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = resnet_utils.stack_blocks_dense(
                    net, blocks, output_stride, store_non_strided_activations)
                # Convert end_points_collection into a dictionary of end_points.
                end_points = slim.utils.convert_collection_to_dict(
                    end_points_collection)

                if global_pool:
                    # Global average pooling.
                    net = tf.reduce_mean(net, [1, 2],
                                         name='pool5',
                                         keep_dims=True)
                    end_points['global_pool'] = net

                #max
                net = _max_tile_2res(net, num_images)

                if num_classes:
                    #first fully connected layer
                    net = slim.conv2d(net,
                                      512, [1, 1],
                                      activation_fn=None,
                                      normalizer_fn=None,
                                      scope='fc1')
                    end_points[sc.name + '/fc1'] = net
                    #dropout
                    net = slim.dropout(net,
                                       keep_prob=0.8,
                                       scope='dropout',
                                       is_training=is_training)
                    end_points[sc.name + '/dropout'] = net
                    #final fully connected layer
                    net = slim.conv2d(net,
                                      num_classes, [1, 1],
                                      activation_fn=None,
                                      normalizer_fn=None,
                                      scope='logits')
                    end_points[sc.name + '/logits'] = net
                    if spatial_squeeze:
                        #remove dimensions of size 1
                        net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                        end_points[sc.name + '/spatial_squeeze'] = net
                    end_points['predictions'] = slim.softmax(
                        net, scope='predictions')
                return net, end_points
예제 #32
0
def resnet_distributions_v1(inputs,
                            blocks,
                            num_classes=None,
                            is_training=True,
                            output_stride=None,
                            include_root_block=True,
                            reuse=None,
                            scope=None,
                            sample_number=1):
    """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    avr_cc: 0, default, average; 1, concatenate

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope([
                slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense,
                resnet_utils.extra_fc, resnet_utils.projecting_feats
        ],
                            outputs_collections=end_points_collection):
            with slim.arg_scope(
                [resnet_utils.extra_fc],
                    loss_collection=tf.GraphKeys.REGULARIZATION_LOSSES):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    if include_root_block:
                        if output_stride is not None:
                            if output_stride % 4 != 0:
                                raise ValueError(
                                    'The output_stride needs to be a multiple of 4.'
                                )
                            output_stride /= 4
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                        net = slim.max_pool2d(net, [3, 3],
                                              stride=2,
                                              scope='pool1')
                    net = resnet_utils.stack_blocks_dense(
                        net, blocks, output_stride)
                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)
                    with tf.variable_scope('Distributions'):
                        mu = tf.reduce_mean(net, [1, 2],
                                            name='pool5',
                                            keep_dims=True)
                        end_points['global_pool'] = mu

                        sig = slim.conv2d(
                            net,
                            net.shape[-1], [net.shape[1], net.shape[2]],
                            activation_fn=None,
                            normalizer_fn=None,
                            biases_initializer=tf.zeros_initializer(),
                            scope='sig',
                            padding='VALID')

                        sig += 1e-10

                        mu = slim.dropout(mu,
                                          scope='Dropout',
                                          is_training=is_training)
                        end_points['PreLogits_mean'] = tf.squeeze(
                            mu, [1, 2], name='PreLogits_mean')
                        end_points['PreLogits_sig'] = tf.squeeze(
                            sig, [1, 2], name='PreLogits_sig')

                        tfd = tf.contrib.distributions
                        #MultivariateNormalDiagWithSoftplusScale
                        sample_dist = tfd.MultivariateNormalDiagWithSoftplusScale(
                            loc=end_points['PreLogits_mean'],
                            scale_diag=end_points['PreLogits_sig'])

                        end_points['sample_dist'] = sample_dist
                        end_points['sample_dist_samples'] = sample_dist.sample(
                            100)
                        end_points[
                            'sample_dist_covariance'] = sample_dist.stddev()

                        if not num_classes:
                            return mu, end_points

                    logits = slim.conv2d(
                        mu,
                        num_classes, [1, 1],
                        activation_fn=None,
                        normalizer_fn=None,
                        biases_initializer=tf.zeros_initializer(),
                        scope='logits')

                    logits = tf.squeeze(logits, [1, 2])

                    #with tf.variable_scope('Distributions'):
                    logits2 = []
                    for iii in range(sample_number):
                        z = sample_dist.sample(1)
                        z = tf.reshape(z, [-1, int(mu.shape[-1])])

                        #import pdb
                        #pdb.set_trace()
                        z = tf.expand_dims(z, 1)
                        z = tf.expand_dims(z, 1)
                        logits_tmp = slim.conv2d(
                            z,
                            num_classes, [1, 1],
                            activation_fn=None,
                            normalizer_fn=None,
                            biases_initializer=tf.zeros_initializer(),
                            scope='logits',
                            reuse=True)
                        logits2.append(tf.squeeze(logits_tmp, [1, 2]))

                    logits = tf.identity(logits, name='output')
                    end_points['Logits'] = logits
                    end_points['Logits2'] = logits2

                    if sample_number == 1:
                        end_points['predictions'] = slim.softmax(
                            logits + 0.1 * logits2[0], scope='predictions')
                    else:
                        end_points['predictions'] = slim.softmax(
                            logits, scope='predictions')

        return logits, logits2, end_points
예제 #33
0
def resnet_v2(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=False,
              reuse=None,
              scope=None):
    """Generator for v2 (preactivation) ResNet models.

  This function generates a family of ResNet v2 models. See the resnet_v2_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it. If excluded, `inputs` should be the
      results of an activation-less convolution.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
        To use this parameter, the input images must be smaller than 300x300
        pixels, in which case the output logit layer does not contain spatial
        information and can be removed.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.


  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope(
            [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
                outputs_collections=end_points_collection):
            with slim.arg_scope([slim.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError(
                                'The output_stride needs to be a multiple of 4.'
                            )
                        output_stride /= 4
                    # We do not include batch normalization or activation functions in
                    # conv1 because the first ResNet unit will perform these. Cf.
                    # Appendix of [2].
                    with slim.arg_scope([slim.conv2d],
                                        activation_fn=None,
                                        normalizer_fn=None):
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')
                net = resnet_utils.stack_blocks_dense(net, blocks,
                                                      output_stride)
                # This is needed because the pre-activation variant does not have batch
                # normalization or activation functions in the residual unit output. See
                # Appendix of [2].
                net = slim.batch_norm(net,
                                      activation_fn=tf.nn.relu,
                                      scope='postnorm')
                if global_pool:
                    # Global average pooling.
                    net = tf.reduce_mean(net, [1, 2],
                                         name='pool5',
                                         keep_dims=True)
                if num_classes is not None:
                    net = slim.conv2d(net,
                                      num_classes, [1, 1],
                                      activation_fn=None,
                                      normalizer_fn=None,
                                      scope='logits')
                    if spatial_squeeze:
                        net = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                # Convert end_points_collection into a dictionary of end_points.
                end_points = slim.utils.convert_collection_to_dict(
                    end_points_collection)
                if num_classes is not None:
                    end_points['predictions'] = slim.softmax(
                        net, scope='predictions')
                return net, end_points
예제 #34
0
def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              extra_fc_type=-1,
              extra_fc_out_dim=0,
              extra_fc_W_decay=0.0,
              f_decorr_fr=-1.,
              f_decorr_decay=0.0,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              avr_cc=0,
              feat_proj_type=-1,
              proj_dim=1024,
              feat_prop_down=False,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet models.

  This function generates a family of ResNet v1 models. See the resnet_v1_*()
  methods for specific model instantiations, obtained by selecting different
  block instantiations that produce ResNets of various depths.

  Training for image classification on Imagenet is usually done with [224, 224]
  inputs, resulting in [7, 7] feature maps at the output of the last ResNet
  block for the ResNets defined in [1] that have nominal stride equal to 32.
  However, for dense prediction tasks we advise that one uses inputs with
  spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
  this case the feature maps at the ResNet output will have spatial shape
  [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
  and corners exactly aligned with the input image corners, which greatly
  facilitates alignment of the features to the image. Using as input [225, 225]
  images results in [8, 8] feature maps at the output of the last ResNet block.

  For dense prediction tasks, the ResNet needs to run in fully-convolutional
  (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
  have nominal stride equal to 32 and a good choice in FCN mode is to use
  output_stride=16 in order to increase the density of the computed features at
  small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

  Args:
    inputs: A tensor of size [batch, height_in, width_in, channels].
    blocks: A list of length equal to the number of ResNet blocks. Each element
      is a resnet_utils.Block object describing the units in the block.
    num_classes: Number of predicted classes for classification tasks. If None
      we return the features before the logit layer.
    is_training: whether is training or not.
    global_pool: If True, we perform global average pooling before computing the
      logits. Set to True for image classification, False for dense prediction.
    output_stride: If None, then the output will be computed at the nominal
      network stride. If output_stride is not None, it specifies the requested
      ratio of input to output spatial resolution.
    include_root_block: If True, include the initial convolution followed by
      max-pooling, if False excludes it.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    avr_cc: 0, default, average; 1, concatenate

  Returns:
    net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
      If global_pool is False, then height_out and width_out are reduced by a
      factor of output_stride compared to the respective height_in and width_in,
      else both height_out and width_out equal one. If num_classes is None, then
      net is the output of the last ResNet block, potentially after global
      average pooling. If num_classes is not None, net contains the pre-softmax
      activations.
    end_points: A dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: If the target output_stride is not valid.
  """
    with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope([
                slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense,
                resnet_utils.extra_fc, resnet_utils.projecting_feats
        ],
                            outputs_collections=end_points_collection):
            with slim.arg_scope(
                [resnet_utils.extra_fc],
                    loss_collection=tf.GraphKeys.REGULARIZATION_LOSSES):
                with slim.arg_scope([slim.batch_norm],
                                    is_training=is_training):
                    net = inputs
                    if include_root_block:
                        if output_stride is not None:
                            if output_stride % 4 != 0:
                                raise ValueError(
                                    'The output_stride needs to be a multiple of 4.'
                                )
                            output_stride /= 4
                        net = resnet_utils.conv2d_same(net,
                                                       64,
                                                       7,
                                                       stride=2,
                                                       scope='conv1')
                        net = slim.max_pool2d(net, [3, 3],
                                              stride=2,
                                              scope='pool1')
                    net = resnet_utils.stack_blocks_dense(
                        net, blocks, output_stride)
                    if extra_fc_type >= 0:
                        # extra fc layer; keep its dimension as 4?
                        net, pre_pool5 = resnet_utils.extra_fc(
                            net, extra_fc_out_dim, extra_fc_W_decay,
                            extra_fc_type, f_decorr_fr, f_decorr_decay)
                    elif global_pool:
                        # Global average pooling.
                        net = tf.reduce_mean(net, [1, 2],
                                             name='pool5',
                                             keep_dims=True)
                        deep_branch_feat = net
                        # if (gate_proj_type != -1) and (gate_aug_type != -1):
                        #     raise ValueError('Either gate_proj_type or gate_aug_type can be activated at a time.')
                        #
                        # if not gate_aug_type == -1:
                        #     # Augmenting pool5 features with gates
                        #     net = MoEL_utils.augmenting_gates(net, gate_aug_type, gate_prop_down, is_training,
                        #                                       concat_gate_reg=concat_gate_reg,
                        #                                       concat_gate_reg_type=concat_gate_reg_type)

                        if not feat_proj_type == -1:
                            # projecting hidden feats and/or deep fc features to the same dimension and fuse them up
                            net = resnet_utils.projecting_feats(net,
                                                                feat_proj_type,
                                                                proj_dim,
                                                                feat_prop_down,
                                                                is_training,
                                                                avr_cc=avr_cc)

                    if num_classes is not None:
                        net = slim.conv2d(net,
                                          num_classes, [1, 1],
                                          activation_fn=None,
                                          normalizer_fn=None,
                                          scope='logits')
                    if spatial_squeeze:
                        logits = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                    # Convert end_points_collection into a dictionary of end_points.
                    end_points = slim.utils.convert_collection_to_dict(
                        end_points_collection)

                    if num_classes is not None:
                        end_points['predictions'] = slim.softmax(
                            net, scope='predictions')
                    if extra_fc_type >= 0:
                        end_points['pre_pool5'] = pre_pool5
                    elif global_pool:
                        end_points['deep_branch_feat'] = deep_branch_feat
                        end_points['PreLogits'] = tf.squeeze(deep_branch_feat,
                                                             [1, 2],
                                                             name='PreLogits')
                    end_points['Logits'] = logits
                    return logits, end_points