예제 #1
0
class _3DGAN(object):
    def __init__(self, args, config=config):
        self.args = args
        self.attribute = args.attribute
        self.gpu = args.gpu
        self.mode = args.mode
        self.restore = args.restore

        # init dataset and networks
        self.config = config
        self.dataset = ShapeNet(self.attribute)
        self.G = Generator()
        self.D = Discriminator()

        self.adv_criterion = torch.nn.BCELoss()

        self.set_mode_and_gpu()
        self.restore_from_file()

    def set_mode_and_gpu(self):
        if self.mode == 'train':
            self.G.train()
            self.D.train()
            if self.gpu:
                with torch.cuda.device(self.gpu[0]):
                    self.G.cuda()
                    self.D.cuda()
                    self.adv_criterion.cuda()

            if len(self.gpu) > 1:
                self.G = torch.nn.DataParallel(self.G, device_ids=self.gpu)
                self.D = torch.nn.DataParallel(self.D, device_ids=self.gpu)

        elif self.mode == 'test':
            self.G.eval()
            self.D.eval()
            if self.gpu:
                with torch.cuda.device(self.gpu[0]):
                    self.G.cuda()
                    self.D.cuda()

            if len(self.gpu) > 1:
                self.G = torch.nn.DataParallel(self.G, device_ids=self.gpu)
                self.D = torch.nn.DataParallel(self.D, device_ids=self.gpu)

        else:
            raise NotImplementationError()

    def restore_from_file(self):
        if self.restore is not None:
            ckpt_file_G = os.path.join(
                self.config.model_dir,
                'G_iter_{:06d}.pth'.format(self.restore))
            assert os.path.exists(ckpt_file_G)
            self.G.load_state_dict(torch.load(ckpt_file_G))

            if self.mode == 'train':
                ckpt_file_D = os.path.join(
                    self.config.model_dir,
                    'D_iter_{:06d}.pth'.format(self.restore))
                assert os.path.exists(ckpt_file_D)
                self.D.load_state_dict(torch.load(ckpt_file_D))

            self.start_step = self.restore + 1
        else:
            self.start_step = 1

    def save_log(self):
        scalar_info = {
            'loss_D': self.loss_D,
            'loss_G': self.loss_G,
            'G_lr': self.G_lr_scheduler.get_lr()[0],
            'D_lr': self.D_lr_scheduler.get_lr()[0],
        }
        for key, value in self.G_loss.items():
            scalar_info['G_loss/' + key] = value

        for key, value in self.D_loss.items():
            scalar_info['D_loss/' + key] = value

        for tag, value in scalar_info.items():
            self.writer.add_scalar(tag, value, self.step)

    def save_img(self, save_num=5):
        for i in range(save_num):
            mdict = {'instance': self.fake_X[i, 0].data.cpu().numpy()}
            sio.savemat(
                os.path.join(self.config.img_dir,
                             '{:06d}_{:02d}.mat'.format(self.step, i)), mdict)

    def save_model(self):
        torch.save(
            {key: val.cpu()
             for key, val in self.G.state_dict().items()},
            os.path.join(self.config.model_dir,
                         'G_iter_{:06d}.pth'.format(self.step)))
        torch.save(
            {key: val.cpu()
             for key, val in self.D.state_dict().items()},
            os.path.join(self.config.model_dir,
                         'D_iter_{:06d}.pth'.format(self.step)))

    def train(self):
        self.writer = SummaryWriter(self.config.log_dir)
        self.opt_G = torch.optim.Adam(self.G.parameters(),
                                      lr=self.config.G_lr,
                                      betas=(0.5, 0.999))
        self.opt_D = torch.optim.Adam(self.D.parameters(),
                                      lr=self.config.D_lr,
                                      betas=(0.5, 0.999))
        self.G_lr_scheduler = torch.optim.lr_scheduler.StepLR(
            self.opt_G,
            step_size=self.config.step_size,
            gamma=self.config.gamma)
        self.D_lr_scheduler = torch.optim.lr_scheduler.StepLR(
            self.opt_D,
            step_size=self.config.step_size,
            gamma=self.config.gamma)

        # start training
        for step in range(self.start_step, 1 + self.config.max_iter):
            self.step = step
            self.G_lr_scheduler.step()
            self.D_lr_scheduler.step()

            self.real_X = next(self.dataset.gen(True))
            self.noise = torch.randn(self.config.nchw[0], 200)
            if len(self.gpu):
                with torch.cuda.device(self.gpu[0]):
                    self.real_X = self.real_X.cuda()
                    self.noise = self.noise.cuda()

            self.fake_X = self.G(self.noise)

            # update D
            self.D_real = self.D(self.real_X)
            self.D_fake = self.D(self.fake_X.detach())
            self.D_loss = {
                'adv_real':
                self.adv_criterion(self.D_real, torch.ones_like(self.D_real)),
                'adv_fake':
                self.adv_criterion(self.D_fake, torch.zeros_like(self.D_fake)),
            }
            self.loss_D = sum(self.D_loss.values())

            self.opt_D.zero_grad()
            self.loss_D.backward()
            self.opt_D.step()

            # update G
            self.D_fake = self.D(self.fake_X)
            self.G_loss = {
                'adv_fake':
                self.adv_criterion(self.D_fake, torch.ones_like(self.D_fake))
            }
            self.loss_G = sum(self.G_loss.values())
            self.opt_G.zero_grad()
            self.loss_G.backward()
            self.opt_G.step()

            print('step: {:06d}, loss_D: {:.6f}, loss_G: {:.6f}'.format(
                self.step,
                self.loss_D.data.cpu().numpy(),
                self.loss_G.data.cpu().numpy()))

            if self.step % 100 == 0:
                self.save_log()

            if self.step % 1000 == 0:
                self.save_img()
                self.save_model()

        print('Finished training!')
        self.writer.close()
예제 #2
0
class GAN_CLS(object):
    def __init__(self, args, data_loader, SUPERVISED=True):
        """
        Arguments :
        ----------
        args : Arguments defined in Argument Parser
        data_loader = An instance of class DataLoader for loading our dataset in batches
        SUPERVISED :

        """

        self.data_loader = data_loader
        self.num_epochs = args.num_epochs
        self.batch_size = args.batch_size

        self.log_step = config.log_step
        self.sample_step = config.sample_step

        self.log_dir = args.log_dir
        self.checkpoint_dir = args.checkpoint_dir
        self.sample_dir = config.sample_dir
        self.final_model = args.final_model

        self.dataset = args.dataset
        self.model_name = args.model_name

        self.img_size = args.img_size
        self.z_dim = args.z_dim
        self.text_embed_dim = args.text_embed_dim
        self.text_reduced_dim = args.text_reduced_dim
        self.learning_rate = args.learning_rate
        self.beta1 = args.beta1
        self.beta2 = args.beta2
        self.l1_coeff = args.l1_coeff
        self.resume_epoch = args.resume_epoch
        self.SUPERVISED = SUPERVISED

        # Logger setting
        self.logger = logging.getLogger('__name__')
        self.logger.setLevel(logging.INFO)
        self.formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s')
        self.file_handler = logging.FileHandler(self.log_dir)
        self.file_handler.setFormatter(self.formatter)
        self.logger.addHandler(self.file_handler)

        self.build_model()

    def build_model(self):
        """ A function of defining following instances :

        -----  Generator
        -----  Discriminator
        -----  Optimizer for Generator
        -----  Optimizer for Discriminator
        -----  Defining Loss functions

        """

        # ---------------------------------------------------------------------
        #						1. Network Initialization
        # ---------------------------------------------------------------------
        self.gen = Generator(batch_size=self.batch_size,
                             img_size=self, img_size,
                             z_dim=self.z_dim,
                             text_embed_dim=self.text_embed_dim,
                             text_reduced_dim=self.text_reduced_dim)

        self.disc = Discriminator(batch_size=self.batch_size,
                                  img_size=self, img_size,
                                  text_embed_dim=self.text_embed_dim,
                                  text_reduced_dim=self.text_reduced_dim)

        self.gen_optim = optim.Adam(self.gen.parameters(),
                                    lr=self.learning_rate,
                                    betas=(self.beta1, self.beta2))

        self.disc_optim = optim.Adam(self.disc.parameters(),
                                     lr=self.learning_rate,
                                     betas=(self.beta1, self.beta2))

        self.cls_gan_optim = optim.Adam(itertools.chain(self.gen.parameters(),
                                                        self.disc.parameters()),
                                        lr=self.learning_rate,
                                        betas=(self.beta1, self.beta2))

        print ('-------------  Generator Model Info  ---------------')
        self.print_network(self.gen, 'G')
        print ('------------------------------------------------')

        print ('-------------  Discriminator Model Info  ---------------')
        self.print_network(self.disc, 'D')
        print ('------------------------------------------------')

        self.gen.cuda()
        self.disc.cuda()
        self.criterion = nn.BCELoss().cuda()
        # self.CE_loss = nn.CrossEntropyLoss().cuda()
        # self.MSE_loss = nn.MSELoss().cuda()
        self.gen.train()
        self.disc.train()

    def print_network(self, model, name):
        """ A function for printing total number of model parameters """
        num_params = 0
        for p in model.parameters():
            num_params += p.numel()

        print(model)
        print(name)
        print("Total number of parameters: {}".format(num_params))

    def load_checkpoints(self, resume_epoch):
        """Restore the trained generator and discriminator."""
        print('Loading the trained models from step {}...'.format(resume_epoch))
        G_path = os.path.join(self.checkpoint_dir, '{}-G.ckpt'.format(resume_epoch))
        D_path = os.path.join(self.checkpoint_dir, '{}-D.ckpt'.format(resume_epoch))
        self.gen.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
        self.disc.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))

    def train_model(self):

        data_loader = self.data_loader

        start_epoch = 0
        if self.resume_epoch:
            start_epoch = self.resume_epoch
            self.load_checkpoints(self.resume_epoch)

        print ('---------------  Model Training Started  ---------------')
        start_time = time.time()

        for epoch in range(start_epoch, self.num_epochs):
            for idx, batch in enumerate(data_loader):
                true_imgs = batch['true_imgs']
                true_embed = batch['true_embed']
                false_imgs = batch['false_imgs']

                real_labels = torch.ones(true_imgs.size(0))
                fake_labels = torch.zeros(true_imgs.size(0))

                smooth_real_labels = torch.FloatTensor(Utils.smooth_label(real_labels.numpy(), -0.1))

                true_imgs = Variable(true_imgs.float()).cuda()
                true_embed = Variable(true_embed.float()).cuda()
                false_imgs = Variable(false_imgs.float()).cuda()

                real_labels = Variable(real_labels).cuda()
                smooth_real_labels = Variable(smooth_real_labels).cuda()
                fake_labels = Variable(fake_labels).cuda()

                # ---------------------------------------------------------------
                # 					  2. Training the generator
                # ---------------------------------------------------------------
                self.gen.zero_grad()
                z = Variable(torch.randn(true_imgs.size(0), self.z_dim)).cuda()
                fake_imgs = self.gen(true_embed, z)
                fake_out, fake_logit = self.disc(fake_imgs, true_embed)
                true_out, true_logit = self.disc(true_imgs, true_embed)

                gen_loss = self.criterion(fake_out, real_labels) +
                    self.l1_coeff * nn.L1Loss(fake_imgs, true_imgs)

                gen_loss.backward()
                self.gen_optim.step()

                # ---------------------------------------------------------------
                # 					3. Training the discriminator
                # ---------------------------------------------------------------
                self.disc.zero_grad()
                false_out, false_logit = self.disc(false_imgs, true_embed)
                disc_loss = self.criterion(true_out, smooth_real_labels) +
                    self.criterion(fake_out, fake_labels) + self.criterion(false_out, fake_labels)

                disc_loss.backward()
                self.disc_optim.step()

                # self.cls_gan_optim.step()

                # Logging
                loss = {}
                loss['G_loss'] = gen_loss.item()
                loss['D_loss'] = disc_loss.item()

                # ---------------------------------------------------------------
                # 					4. Logging INFO into log_dir
                # ---------------------------------------------------------------
                if (idx + 1) % self.log_step == 0:
                    end_time = time.time() - start_time
                    end_time = datetime.timedelta(seconds=end_time)
                    log = "Elapsed [{}], Epoch [{}/{}], Idx [{}]".format(end_time, epoch + 1,
                                                                         self.num_epochs, idx)

                for net, loss_value in loss.items():
                    log += ", {}: {:.4f}".format(net, loss_value)
                    self.logger.info(log)
                    print (log)

                # ---------------------------------------------------------------
                # 					5. Saving generated images
                # ---------------------------------------------------------------
                if (idx + 1) % self.sample_step == 0:
                    concat_imgs = torch.cat((true_imgs, fake_imgs), 2)  # ??????????
                    save_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(idx + 1))
                    cocat_imgs = (cocat_imgs + 1) / 2
                    # out.clamp_(0, 1)
                    save_image(concat_imgs.data.cpu(), self.sample_dir, nrow=1, padding=0)
                    print ('Saved real and fake images into {}...'.format(self.sample_dir))

                # ---------------------------------------------------------------
                # 				6. Saving the checkpoints & final model
                # ---------------------------------------------------------------
                if (idx + 1) % self.model_save_step == 0:
                    G_path = os.path.join(self.checkpoint_dir, '{}-G.ckpt'.format(idx + 1))
                    D_path = os.path.join(self.checkpoint_dir, '{}-D.ckpt'.format(idx + 1))
                    torch.save(self.gen.state_dict(), G_path)
                    torch.save(self.disc.state_dict(), D_path)
                    print('Saved model checkpoints into {}...'.format(self.checkpoint_dir))
예제 #3
0
else:
    print('not implemented')
    exit()

trn_dloader = torch.utils.data.DataLoader(dataset=trn_dataset, batch_size=14, shuffle=True)
val_dloader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=1, shuffle=False)
hmaps_ch, pmaps_ch = trn_dataset.num_channels()

# load networks
G = FSRNet(hmaps_ch, pmaps_ch)
G = nn.DataParallel(G)
G = G.cuda()

D = Discriminator(input_shape=(3, 128, 128))
D = nn.DataParallel(D)
D = D.cuda()

F = FeatureExtractor().cuda()
F.eval()

# settings
a = 1
b = 1
r_c = 1e-3
r_p = 1e-1
learning_rate = 2.5e-4
criterion_MSE = nn.MSELoss()
criterion_BCE = nn.BCELoss()
optimizer_G = optim.RMSprop(G.parameters(), lr=learning_rate)
optimizer_D = optim.RMSprop(D.parameters(), lr=learning_rate)
예제 #4
0
#             nn.LeakyReLU(0.2, inplace=True),
#             nn.Linear(1024, 784),
#             nn.Tanh()
#         )

#     def forward(self, x):
#         x = x.view(x.size(0), 100)
#         out = self.model(x)
#         return out

from nets import Generator, Discriminator

G = Generator((100, 500, 28 * 28), 'relu')
D = Discriminator((28 * 28, 500, 1), 'relu')

discriminator = D.cuda()
generator = G.cuda()

criterion = nn.BCELoss()
lr = 0.0002
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=lr)
g_optimizer = torch.optim.Adam(generator.parameters(), lr=lr)


def train_discriminator(discriminator, images, real_labels, fake_images,
                        fake_labels):
    discriminator.zero_grad()

    # real_outputs = discriminator(images.reshape(-1, 28*28))
    # real_loss = criterion(outputs, real_labels)
    # real_score = real_outputs