#Load the preprocessed version, saving on computation X = np.load('../data/data_cmu.npz')['clips'] X = np.swapaxes(X, 1, 2).astype(theano.config.floatX) X = X[:,:-4] preprocess = np.load('../data/Joe/preprocess.npz') X = (X - preprocess['Xmean']) / preprocess['Xstd'] H = np.load('../data/Joe/HiddenActivations.npz')['Orig'] from network import network network.load([ None, '../models/conv_ae/layer_0.npz', None, None, '../models/conv_ae/layer_1.npz', None, None, '../models/conv_ae/layer_2.npz', None, None, ]) for layer in network.layers: if isinstance(layer, NoiseLayer): layer.amount = 0.0 if isinstance(layer, Pool1DLayer): layer.depooler = lambda x, **kw: x/2 # Go through inputs 1by1 for input in range(len(X)): Xorig = X[input:input+1] #Theano shared object to pass to network shared = theano.shared(H[input:input+1])
X = np.load('../data/data_cmu.npz')['clips'] X = np.swapaxes(X, 1, 2).astype(theano.config.floatX) X = X[:, :-4] preprocess = np.load('../data/Joe/preprocess.npz') X = (X - preprocess['Xmean']) / preprocess['Xstd'] from network import network network.load([ None, '../models/conv_ae/layer_0.npz', None, None, '../models/conv_ae/layer_1.npz', None, None, '../models/conv_ae/layer_2.npz', None, None, ]) for layer in network.layers: if isinstance(layer, NoiseLayer): layer.amount = 0.0 if isinstance(layer, Pool1DLayer): layer.depooler = lambda x, **kw: x / 2 while True: index = rng.randint(len(X) - 1) amount = 0.5
def test(X,y): global model accuracies = [] costs = [] for i in range(0,X.shape[0],64): end = min(i+64,X.shape[0]) model.test(X[i:end],y[i:end],accuracies,costs) accuracies = np.array(accuracies) costs = np.array(costs) print("Accuracy : ",np.mean(accuracies)) print("Cost : ",np.sum(costs)) if __name__ == "__main__": global model model = network.load("model.json") data = json.load(open("data/data.json","rb")) trainX = np.array(data['trainX']) trainY = np.array(data['trainY'],dtype=np.int32) validX = np.array(data['validX']) validY = np.array(data['validY'],dtype=np.int32) testX = np.array(data['testX']) testY = np.array(data['testY'],dtype=np.int32) print("TRAIN SET") test(trainX,trainY) print("\n\nVALIDATION SET") test(validX,validY) print("\n\nTEST SET")