W1 = tf.Variable(w2v, trainable=True) X_embedding = tf.nn.embedding_lookup(W1, X) X_embedding = X_embedding[..., tf.newaxis] if args.tf_embedding_type == 'multi-channel': W1 = tf.Variable(w2v, trainable=True) W2 = tf.Variable(w2v, trainable=False) X_1 = tf.nn.embedding_lookup(W1, X) X_2 = tf.nn.embedding_lookup(W2, X) X_1 = X_1[..., tf.newaxis] X_2 = X_2[..., tf.newaxis] X_embedding = tf.concat([X_1, X_2], axis=-1) tf.logging.info("input dimension:{}".format(X_embedding.get_shape())) if args.tf_model_type == 'capsule-A': poses, activations = capsule_model_A(X_embedding, args.num_classes) if args.tf_model_type == 'capsule-B': poses, activations = capsule_model_B(X_embedding, args.num_classes) if args.tf_model_type == 'CNN': poses, activations = baseline_model_cnn(X_embedding, args.num_classes) if args.tf_model_type == 'KIMCNN': poses, activations = baseline_model_kimcnn(X_embedding, args.max_sent, args.num_classes) if args.tf_loss_type == 'spread_loss': loss = spread_loss(y, activations, margin) if args.tf_loss_type == 'margin_loss': loss = margin_loss(y, activations) if args.tf_loss_type == 'cross_entropy': loss = cross_entropy(y, activations)
W1 = tf.Variable(w2v, trainable = True) X_embedding = tf.nn.embedding_lookup(W1, X) X_embedding = X_embedding[...,tf.newaxis] if args.embedding_type == 'multi-channel': W1 = tf.Variable(w2v, trainable = True) W2 = tf.Variable(w2v, trainable = False) X_1 = tf.nn.embedding_lookup(W1, X) X_2 = tf.nn.embedding_lookup(W2, X) X_1 = X_1[...,tf.newaxis] X_2 = X_2[...,tf.newaxis] X_embedding = tf.concat([X_1,X_2],axis=-1) tf.logging.info("input dimension:{}".format(X_embedding.get_shape())) if args.model_type == 'capsule-A': poses, activations = capsule_model_A(X_embedding, args.num_classes) if args.model_type == 'capsule-B': poses, activations = capsule_model_B(X_embedding, args.num_classes) if args.model_type == 'CNN': poses, activations = baseline_model_cnn(X_embedding, args.num_classes) if args.model_type == 'KIMCNN': poses, activations = baseline_model_kimcnn(X_embedding, args.max_sent, args.num_classes) if args.loss_type == 'spread_loss': loss = spread_loss(y, activations, margin) if args.loss_type == 'margin_loss': loss = margin_loss(y, activations) if args.loss_type == 'cross_entropy': loss = cross_entropy(y, activations) y_pred = tf.argmax(activations, axis=1, name="y_proba")