def test_nn(): p = 2 n = 1000 samples, cov = network.nn_network(p, n) x = samples[:,0] y = samples[:,1] plot(x, y, 'o') show()
def nn_lasso(r = 20): fps = np.zeros(r) fns = np.zeros(r) norms = np.zeros(r) for i in range(r): samples, cov = network.nn_network() t = 1e-1 fpr, fnr, fnorm = estimate_data(samples, cov, t) fps[i] = fpr fns[i] = fnr norms[i] = fnorm return fps.mean(), fns.mean(), norms.mean()
default="vgg13", type=str) ap.add_argument('--hidden_units', type=int, dest="hidden_units", action="store", default=120) pa = ap.parse_args() where = pa.data_dir path = pa.save_dir lr = pa.learning_rate structure = pa.arch dropout = pa.dropout hidden_layer1 = pa.hidden_units power = pa.gpu epochs = pa.epochs trainloader, v_loader, testloader, train_data = network.load_data(where) model, optimizer, criterion = network.nn_network(structure, dropout, hidden_layer1, lr, power) network.train_network(model, optimizer, criterion, trainloader, v_loader, epochs, 20, power) network.save_checkpoint(model, train_data, path, structure, hidden_layer1, dropout, lr) print("All Set and Done. The Model is trained")