def trainDQN(file_name="DQN", env=GridworldEnv(1), batch_size=128, gamma=0.999, eps_start=0.9, eps_end=0.05, eps_decay=1000, is_plot=False, num_episodes=500, max_num_steps_per_episode=1000, learning_rate=0.0001, memory_replay_size=10000): """ DQN training routine. Retuns rewards and durations logs. Plot environment screen """ if is_plot: env.reset() plt.ion() plt.figure() plt.imshow(get_screen(env).cpu().squeeze(0).squeeze(0).numpy(), interpolation='none') plt.title("") plt.draw() plt.pause(0.00001) num_actions = env.action_space.n model = DQN(num_actions) optimizer = optim.Adam(model.parameters(), lr=learning_rate) use_cuda = torch.cuda.is_available() if use_cuda: model.cuda() memory = ReplayMemory(memory_replay_size) episode_durations = [] mean_durations = [] episode_rewards = [] mean_rewards = [] steps_done = 0 # total steps for i_episode in range(num_episodes): if i_episode % 20 == 0: clear_output() print("Cur episode:", i_episode, "steps done:", steps_done, "exploration factor:", eps_end + (eps_start - eps_end) * \ math.exp(-1. * steps_done / eps_decay)) # Initialize the environment and state env.reset() # last_screen = env.current_grid_map # (1, 1, 8, 8) current_screen = get_screen(env) state = current_screen # - last_screen for t in count(): # Select and perform an action action = select_action(state, model, num_actions, eps_start, eps_end, eps_decay, steps_done) steps_done += 1 _, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # Observe new state last_screen = current_screen current_screen = get_screen(env) if not done: next_state = current_screen # - last_screen else: next_state = None # Store the transition in memory memory.push(state, action, next_state, reward) # Move to the next state state = next_state # plot_state(state) # env.render() # Perform one step of the optimization (on the target network) optimize_model(model, optimizer, memory, batch_size, gamma) if done or t + 1 >= max_num_steps_per_episode: episode_durations.append(t + 1) episode_rewards.append(env.episode_total_reward) if is_plot: plot_durations(episode_durations, mean_durations) plot_rewards(episode_rewards, mean_rewards) break print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-dqn-rewards', episode_rewards) np.save(file_name + '-dqn-durations', episode_durations) return model, episode_rewards, episode_durations
def trainSQL0(file_name="SQL0", env=GridworldEnv(1), batch_size=128, gamma=0.999, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=1000, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.0001, memory_replay_size=10000, n_step=10, target_update=10): """ Soft Q-learning training routine when observation vector is input Retuns rewards and durations logs. """ num_actions = env.action_space.n input_size = env.observation_space.shape[0] model = DQN(input_size, num_actions) target_model = DQN(input_size, num_actions) target_model.load_state_dict(model.state_dict()) optimizer = optim.Adam(model.parameters(), lr=learning_rate) # optimizer = optim.RMSprop(model.parameters(), ) use_cuda = torch.cuda.is_available() if use_cuda: model.cuda() memory = ReplayMemory(memory_replay_size, n_step, gamma) episode_durations = [] mean_durations = [] episode_rewards = [] mean_rewards = [] steps_done, t = 0, 0 for i_episode in range(num_episodes): if i_episode % 20 == 0: clear_output() if i_episode != 0: print("Cur episode:", i_episode, "steps done:", episode_durations[-1], "exploration factor:", eps_end + (eps_start - eps_end) * \ math.exp(-1. * steps_done / eps_decay), "reward:", env.episode_total_reward) # Initialize the environment and state state = torch.from_numpy(env.reset()).type(torch.FloatTensor).view( -1, input_size) for t in count(): # Select and perform an action action = select_action(state, model, num_actions, eps_start, eps_end, eps_decay, steps_done) next_state_tmp, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # Observe new state next_state = torch.from_numpy(next_state_tmp).type( torch.FloatTensor).view(-1, input_size) if done: next_state = None # Store the transition in memory memory.push(model, target_model, state, action, next_state, reward) # Move to the next state state = next_state # plot_state(state) # env.render() # Perform one step of the optimization (on the target network) optimize_model(model, target_model, optimizer, memory, batch_size, gamma, beta) #### Difference w.r.t DQN if done or t + 1 >= max_num_steps_per_episode: episode_durations.append(t + 1) episode_rewards.append( env.episode_total_reward ) ##### Modify for OpenAI envs such as CartPole if is_plot: plot_durations(episode_durations, mean_durations) plot_rewards(episode_rewards, mean_rewards) steps_done += 1 break if i_episode % target_update == 0 and i_episode != 0: target_model.load_state_dict(model.state_dict()) print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-sql0-rewards', episode_rewards) np.save(file_name + '-sql0-durations', episode_durations) return model, episode_rewards, episode_durations
def trainD(file_name="Distral_2col_SQL", list_of_envs=[GridworldEnv(5), GridworldEnv(4), GridworldEnv(6)], batch_size=128, gamma=0.999, alpha=0.8, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Returns rewards and durations logs. """ num_actions = list_of_envs[0].action_space.n input_size = list_of_envs[0].observation_space.shape[0] num_envs = len(list_of_envs) policy = PolicyNetwork(input_size, num_actions) models = [DQN(input_size, num_actions) for _ in range(0, num_envs)] memories = [ ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs) ] optimizers = [ optim.Adam(model.parameters(), lr=learning_rate) for model in models ] policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) episode_durations = [[] for _ in range(num_envs)] episode_rewards = [[] for _ in range(num_envs)] steps_done = np.zeros(num_envs) episodes_done = np.zeros(num_envs) current_time = np.zeros(num_envs) # Initialize environments states = [] for env in list_of_envs: states.append( torch.from_numpy(env.reset()).type(torch.FloatTensor).view( -1, input_size)) while np.min(episodes_done) < num_episodes: # TODO: add max_num_steps_per_episode # Optimization is given by alternating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy for i_env, env in enumerate(list_of_envs): # select an action action = select_action(states[i_env], policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta) steps_done[i_env] += 1 current_time[i_env] += 1 next_state_tmp, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # Observe new state next_state = torch.from_numpy(next_state_tmp).type( torch.FloatTensor).view(-1, input_size) if done: next_state = None # Store the transition in memory time = Tensor([current_time[i_env]]) memories[i_env].push(states[i_env], action, next_state, reward, time) # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma) # Update state states[i_env] = next_state # Check if agent reached target if done or current_time[i_env] >= max_num_steps_per_episode: if episodes_done[i_env] <= num_episodes: print( "ENV:", i_env, "iter:", episodes_done[i_env], "\treward:{0:.2f}".format(env.episode_total_reward), "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) episode_rewards[i_env].append(env.episode_total_reward) episodes_done[i_env] += 1 episode_durations[i_env].append(current_time[i_env]) current_time[i_env] = 0 states[i_env] = torch.from_numpy(env.reset()).type( torch.FloatTensor).view(-1, input_size) if is_plot: plot_rewards(episode_rewards, i_env) # Perform one step of the optimization on the Distilled policy optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma, alpha, beta) print('Complete') env.render(close=True) env.close() ## Store Results np.save(file_name + '-rewards', episode_rewards) np.save(file_name + '-durations', episode_durations) return models, policy, episode_rewards, episode_durations
def trainD(file_name="Distral_1col", list_of_envs=[GridworldEnv(4), GridworldEnv(5)], batch_size=128, gamma=0.999, alpha=0.9, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Retuns rewards and durations logs. Plot environment screen """ num_actions = list_of_envs[0].action_space.n num_envs = len(list_of_envs) policy = PolicyNetwork(num_actions) models = [DQN(num_actions) for _ in range(0, num_envs)] ### Add torch.nn.ModuleList (?) memories = [ ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs) ] use_cuda = torch.cuda.is_available() if use_cuda: policy.cuda() for model in models: model.cuda() optimizers = [ optim.Adam(model.parameters(), lr=learning_rate) for model in models ] policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) # optimizer = optim.RMSprop(model.parameters(), ) episode_durations = [[] for _ in range(num_envs)] episode_rewards = [[] for _ in range(num_envs)] steps_done = np.zeros(num_envs) episodes_done = np.zeros(num_envs) current_time = np.zeros(num_envs) # Initialize environments for env in list_of_envs: env.reset() while np.min(episodes_done) < num_episodes: # TODO: add max_num_steps_per_episode # Optimization is given by alterating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy for i_env, env in enumerate(list_of_envs): # print("Cur episode:", i_episode, "steps done:", steps_done, # "exploration factor:", eps_end + (eps_start - eps_end) * \ # math.exp(-1. * steps_done / eps_decay)) # last_screen = env.current_grid_map current_screen = get_screen(env) state = current_screen # - last_screen # Select and perform an action action = select_action(state, policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta) steps_done[i_env] += 1 current_time[i_env] += 1 _, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # Observe new state last_screen = current_screen current_screen = get_screen(env) if not done: next_state = current_screen # - last_screen else: next_state = None # Store the transition in memory time = Tensor([current_time[i_env]]) memories[i_env].push(state, action, next_state, reward, time) # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma) if done: print( "ENV:", i_env, "iter:", episodes_done[i_env], "\treward:", env.episode_total_reward, "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) env.reset() episodes_done[i_env] += 1 episode_durations[i_env].append(current_time[i_env]) current_time[i_env] = 0 episode_rewards[i_env].append(env.episode_total_reward) if is_plot: plot_rewards(episode_rewards, i_env) optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma) print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-distral-2col-rewards', episode_rewards) np.save(file_name + '-distral-2col-durations', episode_durations) return models, policy, episode_rewards, episode_durations
def trainD(file_name="Distral_1col", list_of_envs=[GridworldEnv(4), GridworldEnv(5)], batch_size=128, gamma=0.999, alpha=0.9, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Retuns rewards and durations logs. Plot environment screen """ # action dimension num_actions = list_of_envs[0].action_space.n # total envs num_envs = len(list_of_envs) # pi_0 policy = PolicyNetwork(num_actions) # Q value, every environment has one, used to calculate A_i, models = [DQN(num_actions) for _ in range(0, num_envs)] ### Add torch.nn.ModuleList (?) # replay buffer for env ??? memories = [ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs)] use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # device = "cpu" print(device) # model policy = policy.to(device) for i in range(len(models)): models[i] = models[i].to(device) # optimizer for every Q model optimizers = [optim.Adam(model.parameters(), lr=learning_rate) for model in models] # optimizer for policy policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) # optimizer = optim.RMSprop(model.parameters(), ) # info list for each environment episode_durations = [[] for _ in range(num_envs)] # list of local steps episode_rewards = [[] for _ in range(num_envs)] # list of list of episode reward episodes_done = np.zeros(num_envs) # episode num steps_done = np.zeros(num_envs) # global timesteps for each env current_time = np.zeros(num_envs) # local timesteps for each env # Initialize environments for env in list_of_envs: env.reset() while np.min(episodes_done) < num_episodes: policy.train() for model in models: model.train() # TODO: add max_num_steps_per_episode # Optimization is given by alterating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy # 1. do the step for each env for i_env, env in enumerate(list_of_envs): # print("Cur episode:", i_episode, "steps done:", steps_done, # "exploration factor:", eps_end + (eps_start - eps_end) * \ # math.exp(-1. * steps_done / eps_decay)) # last_screen = env.current_grid_map # ===========update step info begin======================== current_screen = get_screen(env) # state state = current_screen # - last_screen # action chosen by pi_1~pi_i action = select_action(state, policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta, device) # global_steps steps_done[i_env] += 1 # local steps current_time[i_env] += 1 # reward _, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # next state last_screen = current_screen current_screen = get_screen(env) if not done: next_state = current_screen # - last_screen else: next_state = None # add to buffer time = Tensor([current_time[i_env]]) memories[i_env].push(state, action, next_state, reward, time) # 2. do one optimization step for each env using "soft-q-learning". # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma, device) # ===========update step info end ======================== # ===========update episode info begin ==================== if done: print("ENV:", i_env, "iter:", episodes_done[i_env], "\treward:", env.episode_total_reward, "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) # reset env env.reset() # episode steps episodes_done[i_env] += 1 # append each episode local timesteps list for every env episode_durations[i_env].append(current_time[i_env]) # reset local timesteps current_time[i_env] = 0 # append total episode_reward to list episode_rewards[i_env].append(env.episode_total_reward) if is_plot: plot_rewards(episode_rewards, i_env) # ===========update episode info end ==================== # 3. do one optimization step for the policy # after all envs has performed one step, optimize policy optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma, device) print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-distral-2col-rewards', episode_rewards) np.save(file_name + '-distral-2col-durations', episode_durations) return models, policy, episode_rewards, episode_durations