def trainD(file_name="Distral_1col", list_of_envs=[GridworldEnv(4), GridworldEnv(5)], batch_size=128, gamma=0.999, alpha=0.9, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Retuns rewards and durations logs. Plot environment screen """ num_actions = list_of_envs[0].action_space.n num_envs = len(list_of_envs) policy = PolicyNetwork(num_actions) models = [DQN(num_actions) for _ in range(0, num_envs)] ### Add torch.nn.ModuleList (?) memories = [ ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs) ] use_cuda = torch.cuda.is_available() if use_cuda: policy.cuda() for model in models: model.cuda() optimizers = [ optim.Adam(model.parameters(), lr=learning_rate) for model in models ] policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) # optimizer = optim.RMSprop(model.parameters(), ) episode_durations = [[] for _ in range(num_envs)] episode_rewards = [[] for _ in range(num_envs)] steps_done = np.zeros(num_envs) episodes_done = np.zeros(num_envs) current_time = np.zeros(num_envs) # Initialize environments for env in list_of_envs: env.reset() while np.min(episodes_done) < num_episodes: # TODO: add max_num_steps_per_episode # Optimization is given by alterating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy for i_env, env in enumerate(list_of_envs): # print("Cur episode:", i_episode, "steps done:", steps_done, # "exploration factor:", eps_end + (eps_start - eps_end) * \ # math.exp(-1. * steps_done / eps_decay)) # last_screen = env.current_grid_map current_screen = get_screen(env) state = current_screen # - last_screen # Select and perform an action action = select_action(state, policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta) steps_done[i_env] += 1 current_time[i_env] += 1 _, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # Observe new state last_screen = current_screen current_screen = get_screen(env) if not done: next_state = current_screen # - last_screen else: next_state = None # Store the transition in memory time = Tensor([current_time[i_env]]) memories[i_env].push(state, action, next_state, reward, time) # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma) if done: print( "ENV:", i_env, "iter:", episodes_done[i_env], "\treward:", env.episode_total_reward, "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) env.reset() episodes_done[i_env] += 1 episode_durations[i_env].append(current_time[i_env]) current_time[i_env] = 0 episode_rewards[i_env].append(env.episode_total_reward) if is_plot: plot_rewards(episode_rewards, i_env) optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma) print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-distral-2col-rewards', episode_rewards) np.save(file_name + '-distral-2col-durations', episode_durations) return models, policy, episode_rewards, episode_durations
def trainD(file_name="Distral_2col_SQL", list_of_envs=[GridworldEnv(5), GridworldEnv(4), GridworldEnv(6)], batch_size=128, gamma=0.999, alpha=0.8, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Returns rewards and durations logs. """ num_actions = list_of_envs[0].action_space.n input_size = list_of_envs[0].observation_space.shape[0] num_envs = len(list_of_envs) policy = PolicyNetwork(input_size, num_actions) models = [DQN(input_size, num_actions) for _ in range(0, num_envs)] memories = [ ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs) ] optimizers = [ optim.Adam(model.parameters(), lr=learning_rate) for model in models ] policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) episode_durations = [[] for _ in range(num_envs)] episode_rewards = [[] for _ in range(num_envs)] steps_done = np.zeros(num_envs) episodes_done = np.zeros(num_envs) current_time = np.zeros(num_envs) # Initialize environments states = [] for env in list_of_envs: states.append( torch.from_numpy(env.reset()).type(torch.FloatTensor).view( -1, input_size)) while np.min(episodes_done) < num_episodes: # TODO: add max_num_steps_per_episode # Optimization is given by alternating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy for i_env, env in enumerate(list_of_envs): # select an action action = select_action(states[i_env], policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta) steps_done[i_env] += 1 current_time[i_env] += 1 next_state_tmp, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # Observe new state next_state = torch.from_numpy(next_state_tmp).type( torch.FloatTensor).view(-1, input_size) if done: next_state = None # Store the transition in memory time = Tensor([current_time[i_env]]) memories[i_env].push(states[i_env], action, next_state, reward, time) # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma) # Update state states[i_env] = next_state # Check if agent reached target if done or current_time[i_env] >= max_num_steps_per_episode: if episodes_done[i_env] <= num_episodes: print( "ENV:", i_env, "iter:", episodes_done[i_env], "\treward:{0:.2f}".format(env.episode_total_reward), "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) episode_rewards[i_env].append(env.episode_total_reward) episodes_done[i_env] += 1 episode_durations[i_env].append(current_time[i_env]) current_time[i_env] = 0 states[i_env] = torch.from_numpy(env.reset()).type( torch.FloatTensor).view(-1, input_size) if is_plot: plot_rewards(episode_rewards, i_env) # Perform one step of the optimization on the Distilled policy optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma, alpha, beta) print('Complete') env.render(close=True) env.close() ## Store Results np.save(file_name + '-rewards', episode_rewards) np.save(file_name + '-durations', episode_durations) return models, policy, episode_rewards, episode_durations
def main(): # ENVIROMENT env_name = "CartPole-v1" # env_name = "LunarLander-v2" env = gym.make(env_name) n_actions = env.action_space.n feature_dim = env.observation_space.shape[0] # PARAMETERS learning_rate = 1e-3 state_scale = 1.0 reward_scale = 1.0 clip = 0.2 n_epoch = 4 max_episodes = 10 max_timesteps = 200 batch_size = 32 max_iterations = 200 gamma = 0.99 gae_lambda = 0.95 entropy_coefficient = 0.01 # NETWORK value_model = ValueNetwork(in_dim=feature_dim).to(device) value_optimizer = optim.Adam(value_model.parameters(), lr=learning_rate) policy_model = PolicyNetwork(in_dim=feature_dim, n=n_actions).to(device) policy_optimizer = optim.Adam(policy_model.parameters(), lr=learning_rate) # INIT history = History() observation = env.reset() epoch_ite = 0 episode_ite = 0 train_ite = 0 running_reward = -500 # TENSORBOARD timestr = time.strftime("%d%m%Y-%H%M%S-") log_dir = "./runs/" + timestr + env_name + "-BS" + str(batch_size) + "-E" + \ str(max_episodes) + "-MT" + str(max_timesteps) + "-NE" + str(n_epoch) + \ "-LR" + str(learning_rate) + "-G" + str(gamma) + "-L" + str(gae_lambda) writer = SummaryWriter(log_dir=log_dir) # LOAD MODEL # Create folder models if not Path("./models").exists(): print("Creating Models folder") Path("./models").mkdir() model_path = Path("./models/" + env_name + ".tar") if model_path.exists(): print("Loading model!") #Load model checkpoint = torch.load(model_path) policy_model.load_state_dict(checkpoint['policy_model']) policy_optimizer.load_state_dict(checkpoint['policy_optimizer']) value_model.load_state_dict(checkpoint['value_model']) value_optimizer.load_state_dict(checkpoint['value_optimizer']) running_reward = checkpoint['running_reward'] for ite in tqdm(range(max_iterations), ascii=True): if ite % 5 == 0: torch.save({ 'policy_model': policy_model.state_dict(), 'policy_optimizer': policy_optimizer.state_dict(), 'value_model': value_model.state_dict(), 'value_optimizer': value_optimizer.state_dict(), 'running_reward': running_reward}, model_path) episode_ite, running_reward = collect(episode_ite, running_reward, env, max_episodes, max_timesteps, state_scale, reward_scale, writer, history, policy_model, value_model, gamma, gae_lambda, device) # Here we have collected N trajectories. history.build_dataset() data_loader = DataLoader(history, batch_size=batch_size, shuffle=True, drop_last=True) policy_loss, value_loss, train_ite = train_network(data_loader, policy_model, value_model, policy_optimizer, value_optimizer ,n_epoch, clip, train_ite, writer, entropy_coefficient) for p_l, v_l in zip(policy_loss, value_loss): epoch_ite += 1 writer.add_scalar("Policy Loss", p_l, epoch_ite) writer.add_scalar("Value Loss", v_l, epoch_ite) history.free_memory() # print("\n", running_reward) writer.add_scalar("Running Reward", running_reward, epoch_ite) if (running_reward > env.spec.reward_threshold): print("\nSolved!") break
def trainD(file_name="Distral_1col", list_of_envs=[GridworldEnv(4), GridworldEnv(5)], batch_size=128, gamma=0.999, alpha=0.9, beta=5, eps_start=0.9, eps_end=0.05, eps_decay=5, is_plot=False, num_episodes=200, max_num_steps_per_episode=1000, learning_rate=0.001, memory_replay_size=10000, memory_policy_size=1000): """ Soft Q-learning training routine. Retuns rewards and durations logs. Plot environment screen """ # action dimension num_actions = list_of_envs[0].action_space.n # total envs num_envs = len(list_of_envs) # pi_0 policy = PolicyNetwork(num_actions) # Q value, every environment has one, used to calculate A_i, models = [DQN(num_actions) for _ in range(0, num_envs)] ### Add torch.nn.ModuleList (?) # replay buffer for env ??? memories = [ReplayMemory(memory_replay_size, memory_policy_size) for _ in range(0, num_envs)] use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") # device = "cpu" print(device) # model policy = policy.to(device) for i in range(len(models)): models[i] = models[i].to(device) # optimizer for every Q model optimizers = [optim.Adam(model.parameters(), lr=learning_rate) for model in models] # optimizer for policy policy_optimizer = optim.Adam(policy.parameters(), lr=learning_rate) # optimizer = optim.RMSprop(model.parameters(), ) # info list for each environment episode_durations = [[] for _ in range(num_envs)] # list of local steps episode_rewards = [[] for _ in range(num_envs)] # list of list of episode reward episodes_done = np.zeros(num_envs) # episode num steps_done = np.zeros(num_envs) # global timesteps for each env current_time = np.zeros(num_envs) # local timesteps for each env # Initialize environments for env in list_of_envs: env.reset() while np.min(episodes_done) < num_episodes: policy.train() for model in models: model.train() # TODO: add max_num_steps_per_episode # Optimization is given by alterating minimization scheme: # 1. do the step for each env # 2. do one optimization step for each env using "soft-q-learning". # 3. do one optimization step for the policy # 1. do the step for each env for i_env, env in enumerate(list_of_envs): # print("Cur episode:", i_episode, "steps done:", steps_done, # "exploration factor:", eps_end + (eps_start - eps_end) * \ # math.exp(-1. * steps_done / eps_decay)) # last_screen = env.current_grid_map # ===========update step info begin======================== current_screen = get_screen(env) # state state = current_screen # - last_screen # action chosen by pi_1~pi_i action = select_action(state, policy, models[i_env], num_actions, eps_start, eps_end, eps_decay, episodes_done[i_env], alpha, beta, device) # global_steps steps_done[i_env] += 1 # local steps current_time[i_env] += 1 # reward _, reward, done, _ = env.step(action[0, 0]) reward = Tensor([reward]) # next state last_screen = current_screen current_screen = get_screen(env) if not done: next_state = current_screen # - last_screen else: next_state = None # add to buffer time = Tensor([current_time[i_env]]) memories[i_env].push(state, action, next_state, reward, time) # 2. do one optimization step for each env using "soft-q-learning". # Perform one step of the optimization (on the target network) optimize_model(policy, models[i_env], optimizers[i_env], memories[i_env], batch_size, alpha, beta, gamma, device) # ===========update step info end ======================== # ===========update episode info begin ==================== if done: print("ENV:", i_env, "iter:", episodes_done[i_env], "\treward:", env.episode_total_reward, "\tit:", current_time[i_env], "\texp_factor:", eps_end + (eps_start - eps_end) * math.exp(-1. * episodes_done[i_env] / eps_decay)) # reset env env.reset() # episode steps episodes_done[i_env] += 1 # append each episode local timesteps list for every env episode_durations[i_env].append(current_time[i_env]) # reset local timesteps current_time[i_env] = 0 # append total episode_reward to list episode_rewards[i_env].append(env.episode_total_reward) if is_plot: plot_rewards(episode_rewards, i_env) # ===========update episode info end ==================== # 3. do one optimization step for the policy # after all envs has performed one step, optimize policy optimize_policy(policy, policy_optimizer, memories, batch_size, num_envs, gamma, device) print('Complete') env.render(close=True) env.close() if is_plot: plt.ioff() plt.show() ## Store Results np.save(file_name + '-distral-2col-rewards', episode_rewards) np.save(file_name + '-distral-2col-durations', episode_durations) return models, policy, episode_rewards, episode_durations
def main(env_name, lr, state_scale, reward_scale, clip, train_epoch, max_episodes, max_timesteps, batch_size, max_iterations, gamma, gae_lambda, entropy_coefficient, start_running_reward, update_rate): # ENVIROMENT env_name = env_name env = ChessEnv() # PARAMETERS learning_rate = lr state_scale = state_scale reward_scale = reward_scale clip = clip n_epoch = train_epoch max_episodes = max_episodes max_timesteps = max_timesteps batch_size = batch_size max_iterations = max_iterations gamma = gamma gae_lambda = gae_lambda entropy_coefficient = entropy_coefficient # NETWORK value_model = ValueNetwork().to(device) value_optimizer = optim.Adam(value_model.parameters(), lr=learning_rate) policy_model = PolicyNetwork().to(device) policy_optimizer = optim.Adam(policy_model.parameters(), lr=learning_rate) # INIT history = History() epoch_ite = 0 episode_ite = 0 train_ite = 0 running_reward = start_running_reward # TENSORBOARD timestr = time.strftime("%d%m%Y-%H%M%S-") log_dir = "./runs/" + timestr + env_name + "-BS" + str(batch_size) + "-E" + \ str(max_episodes) + "-MT" + str(max_timesteps) + "-NE" + str(n_epoch) + \ "-LR" + str(learning_rate) + "-G" + str(gamma) + "-L" + str(gae_lambda) writer = SummaryWriter(log_dir=log_dir) # LOAD MODEL # Create folder models if not Path("./models").exists(): print("Creating Models folder") Path("./models").mkdir() model_path = Path("./models/" + env_name + ".tar") if model_path.exists(): print("Loading model!") #Load model checkpoint = torch.load(model_path) policy_model.load_state_dict(checkpoint['policy_model']) policy_optimizer.load_state_dict(checkpoint['policy_optimizer']) value_model.load_state_dict(checkpoint['value_model']) value_optimizer.load_state_dict(checkpoint['value_optimizer']) running_reward = checkpoint['running_reward'] # Create SavedEnvs queue SavedEnv = queue.SimpleQueue() for _ in range(max_episodes): env = ChessEnv() SavedEnv.put((env, env.reset(), 0)) # START ITERATING for ite in tqdm(range(max_iterations), ascii=True): # Load model to rival each update_rate epochs if ite % update_rate == 0: print("\nUpdating") rival_policy = PolicyNetwork().to(device) rival_policy.load_state_dict(policy_model.state_dict()) if ite % 5 == 0: torch.save( { 'policy_model': policy_model.state_dict(), 'policy_optimizer': policy_optimizer.state_dict(), 'value_model': value_model.state_dict(), 'value_optimizer': value_optimizer.state_dict(), 'running_reward': running_reward }, model_path) print("\nSimulating") start_simulation = time.perf_counter() q = queue.SimpleQueue() env_list = [] while not SavedEnv.empty(): env_list.append(SavedEnv.get()) threads = [] for saved_env in env_list: t = threading.Thread(target=collect, args=[ q, env_name, saved_env, SavedEnv, max_timesteps, state_scale, reward_scale, policy_model, value_model, gamma, gae_lambda, device, rival_policy ]) t.start() threads.append(t) for t in threads: t.join() # for saved_env in env_list: # if ite % 20 == 0: # update_policy = True # else: # update_policy = False # collect(q, env_name, saved_env, # SavedEnv, max_timesteps, state_scale, reward_scale, # policy_model, value_model, gamma, # gae_lambda, device, update_policy) avg_episode_reward = [] # Write all episodes from queue to history buffer while not q.empty(): episode, done = q.get() history.episodes.append(episode) avg_episode_reward.append((episode.reward, done)) end_simulation = time.perf_counter() print(f"Simulation time: {end_simulation-start_simulation:.2f} ") for ep_reward, done in avg_episode_reward: if done: running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward writer.add_scalar("Average Episode Reward", ep_reward, episode_ite) episode_ite += 1 # avg_ep_reward = sum(avg_episode_reward) / len(avg_episode_reward) # Here we have collected N trajectories and prepare dataset history.build_dataset() data_loader = DataLoader(history, batch_size=batch_size, shuffle=True, drop_last=True) print("Training") policy_loss, value_loss, train_ite = train_network( data_loader, policy_model, value_model, policy_optimizer, value_optimizer, n_epoch, clip, train_ite, writer, entropy_coefficient) end_training = time.perf_counter() print(f"Training time: {end_training-end_simulation:.2f}") for p_l, v_l in zip(policy_loss, value_loss): epoch_ite += 1 writer.add_scalar("Policy Loss", p_l, epoch_ite) writer.add_scalar("Value Loss", v_l, epoch_ite) history.free_memory() # print("\n", running_reward) writer.add_scalar("Running Reward", running_reward, epoch_ite) if (running_reward > 0): print("\nSolved!") break
def main(): # ENVIROMENT # env_name = "CartPole-v1" # env_name = "LunarLander-v2" # env_name = "Acrobot-v1" env_name = "MountainCar-v0" env = gym.make(env_name) n_actions = env.action_space.n feature_dim = env.observation_space.shape[0] # PARAMETERS learning_rate = 1e-3 state_scale = 1.0 reward_scale = 1.0 clip = 0.2 n_epoch = 4 max_episodes = 10 max_timesteps = 100 batch_size = 32 max_iterations = 1000 gamma = 0.99 gae_lambda = 0.95 entropy_coefficient = 0.01 env_threshold = env.spec.reward_threshold # NETWORK value_model = ValueNetwork(in_dim=feature_dim).to(device) value_optimizer = optim.Adam(value_model.parameters(), lr=learning_rate) policy_model = PolicyNetwork(in_dim=feature_dim, n=n_actions).to(device) policy_optimizer = optim.Adam(policy_model.parameters(), lr=learning_rate) # INIT history = History() observation = env.reset() epoch_ite = 0 episode_ite = 0 train_ite = 0 running_reward = -500 # TENSORBOARD timestr = time.strftime("%d%m%Y-%H%M%S-") log_dir = "./runs/" + timestr + env_name + "-BS" + str(batch_size) + "-E" + \ str(max_episodes) + "-MT" + str(max_timesteps) + "-NE" + str(n_epoch) + \ "-LR" + str(learning_rate) + "-G" + str(gamma) + "-L" + str(gae_lambda) writer = SummaryWriter(log_dir=log_dir) # LOAD MODEL # Create folder models if not Path("./models").exists(): print("Creating Models folder") Path("./models").mkdir() model_path = Path("./models/" + env_name + ".tar") if model_path.exists(): print("Loading model!") #Load model checkpoint = torch.load(model_path) policy_model.load_state_dict(checkpoint['policy_model']) policy_optimizer.load_state_dict(checkpoint['policy_optimizer']) value_model.load_state_dict(checkpoint['value_model']) value_optimizer.load_state_dict(checkpoint['value_optimizer']) running_reward = checkpoint['running_reward'] EnvQueue = queue.SimpleQueue() for _ in range(max_episodes): env = gym.make(env_name) observation = env.reset() EnvQueue.put((env, observation, 0)) for ite in tqdm(range(max_iterations), ascii=True): if ite % 5 == 0: torch.save( { 'policy_model': policy_model.state_dict(), 'policy_optimizer': policy_optimizer.state_dict(), 'value_model': value_model.state_dict(), 'value_optimizer': value_optimizer.state_dict(), 'running_reward': running_reward }, model_path) q = queue.SimpleQueue() env_list = [] while not EnvQueue.empty(): env_list.append(EnvQueue.get()) threads = [] for env in env_list: t = threading.Thread(target=collect, args=[ q, env_name, env, EnvQueue, max_timesteps, state_scale, reward_scale, policy_model, value_model, gamma, gae_lambda, device ]) t.start() threads.append(t) for t in threads: t.join() avg_episode_reward = [] # Write all episodes from queue to history buffer while not q.empty(): episode, done = q.get() history.episodes.append(episode) avg_episode_reward.append((episode.reward, done)) for ep_reward, done in avg_episode_reward: if done: running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward writer.add_scalar("Running Reward", running_reward, episode_ite) writer.add_scalar("Episode Reward", ep_reward, episode_ite) episode_ite += 1 # avg_ep_reward = sum(avg_episode_reward) / len(avg_episode_reward) # Here we have collected N trajectories and prepare dataset history.build_dataset() data_loader = DataLoader(history, batch_size=batch_size, shuffle=True, drop_last=True) policy_loss, value_loss, train_ite = train_network( data_loader, policy_model, value_model, policy_optimizer, value_optimizer, n_epoch, clip, train_ite, writer, entropy_coefficient) for p_l, v_l in zip(policy_loss, value_loss): epoch_ite += 1 writer.add_scalar("Policy Loss", p_l, epoch_ite) writer.add_scalar("Value Loss", v_l, epoch_ite) history.free_memory() # print("\n", running_reward) if (running_reward > env_threshold): print("\nSolved!") break
class SAC_Agent: def __init__(self, load_from=None, will_train=True): self.env = TorcsEnv( path='/usr/local/share/games/torcs/config/raceman/quickrace.xml') self.args = SAC_args() self.buffer = ReplayBuffer(self.args.buffer_size) action_dim = self.env.action_space.shape[0] state_dim = self.env.observation_space.shape[0] hidden_dim = 256 self.action_size = action_dim self.state_size = state_dim self.value_net = ValueNetwork(state_dim, hidden_dim).to(self.args.device) self.target_value_net = ValueNetwork(state_dim, hidden_dim).to(self.args.device) self.soft_q_net1 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(self.args.device) self.soft_q_net2 = SoftQNetwork(state_dim, action_dim, hidden_dim).to(self.args.device) self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim).to(self.args.device) self.target_value_net.load_state_dict(self.value_net.state_dict()) self.value_criterion = nn.MSELoss() self.soft_q_loss1 = nn.MSELoss() self.soft_q_loss2 = nn.MSELoss() self.value_opt = optim.Adam(self.value_net.parameters(), lr=self.args.lr) self.soft_q_opt1 = optim.Adam(self.soft_q_net1.parameters(), lr=self.args.lr) self.soft_q_opt2 = optim.Adam(self.soft_q_net2.parameters(), lr=self.args.lr) self.policy_opt = optim.Adam(self.policy_net.parameters(), lr=self.args.lr) if will_train: current_time = time.strftime('%d-%b-%y-%H.%M.%S', time.localtime()) self.plot_folder = f'plots/{current_time}' self.model_save_folder = f'model/{current_time}' make_sure_dir_exists(self.plot_folder) make_sure_dir_exists(self.model_save_folder) self.cp = Checkpoint(self.model_save_folder) if load_from is not None: try: self.load_checkpoint(load_from) except FileNotFoundError: print(f'{load_from} not found. Running default.') else: print('Starting from scratch.') def train(self): remove_log_file() clear_action_logs() eps_n = 0 rewards = [] test_rewards = [] best_reward = -np.inf info = None for eps_n in range(1, self.args.max_eps + 1): # Train loop self.set_mode('train') relaunch = (eps_n - 1) % (20 / self.args.test_rate) == 0 state = self.env.reset(relaunch=relaunch, render=False, sampletrack=False) eps_r = 0 sigma = (self.args.start_sigma - self.args.end_sigma) * (max( 0, 1 - (eps_n - 1) / self.args.max_eps)) + self.args.end_sigma randomprocess = OrnsteinUhlenbeckProcess(self.args.theta, sigma, self.action_size) for step in range(self.args.max_eps_time): # Episode action = self.policy_net.get_train_action(state, randomprocess) next_state, reward, done, info = self.env.step(action) self.buffer.push(state, action, reward, next_state, done) state = next_state eps_r += reward if len(self.buffer) > self.args.batch_size: self.update() if done: break rewards.append(eps_r) test_reward = self.test(eps_n) test_rewards.append(test_reward) if test_reward > best_reward: best_reward = test_reward self.save_checkpoint(eps_n, best_reward) info_str = ', '.join( [key for key in info.keys() if key != 'place']) info_str += f", {info['place']}. place" log(f'Episode {eps_n:<4} Reward: {eps_r:>7.2f} Test Reward: {test_reward:>7.2f} Info: {info_str}' ) if eps_n % self.args.plot_per == 0: self.plot(rewards, test_rewards, eps_n) def update(self): state, action, reward, next_state, done = self.buffer.sample( self.args.batch_size) state = FloatTensor(state).to(self.args.device) next_state = FloatTensor(next_state).to(self.args.device) action = FloatTensor(action).to(self.args.device) reward = FloatTensor(reward).unsqueeze(1).to(self.args.device) done = FloatTensor(np.float32(done)).unsqueeze(1).to(self.args.device) predicted_q_value1 = self.soft_q_net1(state, action) predicted_q_value2 = self.soft_q_net2(state, action) predicted_value = self.value_net(state) new_action, log_prob, epsilon, mean, log_std = self.policy_net.evaluate( state) # Training Q function target_value = self.target_value_net(next_state) target_q_value = reward + (1 - done) * self.args.gamma * target_value q_value_loss1 = self.soft_q_loss1(predicted_q_value1, target_q_value.detach()) q_value_loss2 = self.soft_q_loss2(predicted_q_value2, target_q_value.detach()) self.soft_q_opt1.zero_grad() q_value_loss1.backward() if self.args.clipgrad: self.clip_grad(self.soft_q_net1.parameters()) self.soft_q_opt1.step() self.soft_q_opt2.zero_grad() q_value_loss2.backward() if self.args.clipgrad: self.clip_grad(self.soft_q_net2.parameters()) self.soft_q_opt2.step() # Training Value function predicted_new_q_value = torch.min(self.soft_q_net1(state, new_action), self.soft_q_net2(state, new_action)) target_value_func = predicted_new_q_value - self.args.alpha * log_prob.sum( ) value_loss = self.value_criterion(predicted_value, target_value_func.detach()) self.value_opt.zero_grad() value_loss.backward() if self.args.clipgrad: self.clip_grad(self.value_net.parameters()) self.value_opt.step() # Training Policy function policy_loss = (log_prob - predicted_new_q_value).mean() self.policy_opt.zero_grad() policy_loss.backward() if self.args.clipgrad: self.clip_grad(self.policy_net.parameters()) self.policy_opt.step() # Updating target value network for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(target_param.data * (1.0 - self.args.soft_tau) + param.data * self.args.soft_tau) def test(self, eps_n): self.set_mode('eval') rewards = [] for step in range(self.args.test_rate): render = (eps_n % 30 == 0) and (step == 0) relaunch = render or ((eps_n % 30 == 0) and (step == 1)) state = self.env.reset(relaunch=relaunch, render=render, sampletrack=False) running_reward = 0 for t in range(self.args.max_eps_time): action = self.policy_net.get_test_action(state) state, reward, done, info = self.env.step(action) store(action, eps_n, reward, info, t == 0) running_reward += reward if done: break rewards.append(running_reward) avg_reward = sum(rewards) / self.args.test_rate return avg_reward def plot(self, rewards, test_rewards, eps_n): torch.save({ 'train_rewards': rewards, 'test_rewards': test_rewards }, f'{self.plot_folder}/{eps_n}.pth') figure = plt.figure() plt.plot(rewards, label='Train Rewards') plt.plot(test_rewards, label='Test Rewards') plt.xlabel('Episode') plt.legend() plt.savefig(f'{self.plot_folder}/{eps_n}.png') try: send_mail(f'Improved Torcs SAC | Episode {eps_n}', f'{self.plot_folder}/{eps_n}.png') log('Mail has been sent.') except (KeyboardInterrupt, SystemExit): print('KeyboardInterrupt or SystemExit') raise except Exception as e: print('Mail Exception occured:', e) emsg = e.args[-1] emsg = emsg[:1].lower() + emsg[1:] log('Couldn\'t send mail because', emsg) def clip_grad(self, parameters): for param in parameters: param.grad.data.clamp_(-1, 1) def set_mode(self, mode): if mode == 'train': self.value_net.train() self.target_value_net.train() self.soft_q_net1.train() self.soft_q_net2.train() self.policy_net.train() elif mode == 'eval': self.value_net.eval() self.target_value_net.eval() self.soft_q_net1.eval() self.soft_q_net2.eval() self.policy_net.eval() else: raise ValueError('mode should be either train or eval') def save_checkpoint(self, eps_n, test_reward): self.cp.update(self.value_net, self.soft_q_net1, self.soft_q_net2, self.policy_net) self.cp.save(f'e{eps_n}-r{test_reward:.4f}.pth') log(f'Saved checkpoint at episode {eps_n}.') def load_checkpoint(self, load_from): state_dicts = torch.load(load_from) self.value_net.load_state_dict(state_dicts['best_value']) self.soft_q_net1.load_state_dict(state_dicts['best_q1']) self.soft_q_net2.load_state_dict(state_dicts['best_q2']) self.policy_net.load_state_dict(state_dicts['best_policy']) print(f'Loaded from {load_from}.') def race(self, sampletrack=True): with torch.no_grad(): state = self.env.reset(relaunch=True, render=True, sampletrack=sampletrack) running_reward = 0 done = False while not done: action = self.policy_net.get_test_action(state) state, reward, done, info = self.env.step(action) running_reward += reward print('Reward:', running_reward)
model = PolicyNetwork() train_dataset = TrainDataset() test_dataset = TestDataset() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) test_loader = DataLoader(test_dataset, batch_size=batch_size * 2, shuffle=True, drop_last=True) model.to('cuda') optimizer = optim.Adam(model.parameters(), lr=1e-3) criterion = F.cross_entropy timestr = time.strftime("%d%m%Y-%H%M%S-") log_dir = "./runs/" + timestr + 'SLResnet' writer = SummaryWriter(log_dir=log_dir) # LOAD MODEL # Create folder models if not Path("./models").exists(): print("Creating Models folder") Path("./models").mkdir() model_path = Path("./models/" + 'SLResnet' + ".tar")