update_output = True subplots = False if update_output: #First, we run our configurations import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper( ) training_data = training_data[:1000] import network_dev2 f = open('{0}_output.txt'.format(comparison_file), 'w').close() config_count = 0 net = network_dev2.Network([784, 30, 10], output_filename=comparison_file) net.SGD( training_data, epochs, #epochs 10, #m 3.0, #eta 5, #test_accuracy_check_interval 2, #eta_decrease_factor .9, #u training_data_subsections=training_data_subsections, test_data=test_data, config_num=config_count, run_count=run_count) config_count += 1 net = network_dev2.Network([784, 30, 10], output_filename=comparison_file)
if update_output: #First, we run our configurations import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper() #If we want to speed up our training or magnify differences for comparisons: #Note: will lower accuracy and learning speed. training_data = training_data[:1000] import network_dev2 f = open('{0}_output.txt'.format(comparison_file), 'w').close() config_count = 0 net = network_dev2.Network([784, 30, 10], output_filename=comparison_file, softmax=False, cost=network_dev2.quadratic_cost, weight_init=network_dev2.large_weight_initializer) net.SGD(training_data, epochs, #epochs 10,#m 0.5,#eta 5,#test_accuracy_check_interval 2,#eta_decrease_factor 0,#u 0,#lmbda / regularization rate training_data_subsections=training_data_subsections, validation_data=validation_data, test_data=test_data, early_stopping=early_stopping, output_training_cost=output_training_cost, output_training_accuracy=output_training_accuracy, output_validation_cost=output_validation_cost,
#First, we run our configurations import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper( ) #If we want to speed up our training or magnify differences for comparisons #Note: will lower accuracy and learning speed. training_data = training_data[:1000] import network_dev2 f = open('{0}_output.txt'.format(comparison_file), 'w').close() config_count = 0 net = network_dev2.Network( [784, 30, 10], output_filename=comparison_file, softmax=False, cost=network_dev2.quadratic_cost, weight_init=network_dev2.large_weight_initializer) net.SGD( training_data, epochs, #epochs 10, #m 0.5, #eta 5, #test_accuracy_check_interval 2, #eta_decrease_factor 0, #u 0, #lmbda / regularization rate training_data_subsections=training_data_subsections, validation_data=validation_data, test_data=test_data, early_stopping=early_stopping,