# predict_data[0] = file_helper.read_data(file_num) # file_helper.write_data(file_num, model.predict(predict_data)[0]) # for dense_model ssta and ha predict_data = np.empty([1, 20, 27, 2]) data_y = np.empty([1, 20, 27, 2]) if is_seasonal_circle: data_sc = np.empty([1, 1], dtype='int32') if model_type == 'conv': data_x = np.empty([1, 20, 27, 2]) elif model_type == 'dense': data_x = np.empty([1, 1080]) for start_month in range(file_num, file_num + month - interval, interval): predict_data[0] = file_helper_unformatted.read_data_sstaha(start_month) nino34 = [index_calculation.get_nino34(predict_data[0])] # data preprocess z-zero if data_preprocess_method == 'preprocess_Z': predict_data = data_preprocess.preprocess_Z(predict_data, 0) # data preprocess dimensionless if data_preprocess_method == 'dimensionless': redict_data = data_preprocess.dimensionless(predict_data, 0) # data preprocess 0-1 if data_preprocess_method == 'preprocess_01': predict_data = data_preprocess.preprocess_01(predict_data, 0) # data preprocess no month mean if data_preprocess_method == 'nomonthmean': predict_data = data_preprocess.no_month_mean(predict_data, 0) if model_type == 'conv':
file_hisotircal = 'D:\msy\projects\zc\zcdata\data_historical' data_x = np.empty([1, 20, 27, 2]) fig, ax = plt.subplots() x = np.linspace(file_num, file_num+month+12, month+1+12) nino34_from_data = index_calculation.get_nino34_from_data(file_num, month+12) line1, = plt.plot(x, nino34_from_data, 'black', linewidth=2.5) plt.tick_params(labelsize=15) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] nino34 = [] for start_month in range(file_num+0, file_num+month+0+1, interval): data_x = file_helper_unformatted.read_data_best(file_path0, start_month+192) nino34_temp = index_calculation.get_nino34(data_x) nino34.append(nino34_temp) X = np.linspace(file_num+0, file_num+month+0, month+1) # plt.legend(['prediction', 'ZCdata'], loc='upper right') line2, = plt.plot(X, nino34, 'b', linewidth=1.5, linestyle='-') nino34 = [] for start_month in range(file_num+3, file_num+month+3+1, interval): data_x = file_helper_unformatted.read_data_best(file_path1, start_month+192) nino34_temp = index_calculation.get_nino34(data_x) nino34.append(nino34_temp) X = np.linspace(file_num+3, file_num+month+3, month+1) line3, = plt.plot(X, nino34, 'r', linewidth=1.5, linestyle='-') nino34 = [] for start_month in range(file_num+6, file_num+month+6+1, interval):
# data preprocess z-zero if data_preprocess_method == 'preprocess_Z': data_y = data_preprocess.preprocess_Z(data_y, 1) # data preprocess dimensionless if data_preprocess_method == 'dimensionless': data_y = data_preprocess.dimensionless(data_y, 1) # data preprocess 0-1 if data_preprocess_method == 'preprocess_01': data_y = data_preprocess.preprocess_01(data_y, 1) # data preprocess no month mean if data_preprocess_method == 'nomonthmean': data_y = data_preprocess.no_month_mean(data_y, 1) # calculate nino 3.4 index nino34_temp1 = index_calculation.get_nino34(data_y[0]) nino34.append(nino34_temp1) # file_helper_unformatted.write_data(file_num+month, data_temp[1]) # x = np.linspace(file_num, start_month + prediction_month, prediction_month + 1) x = np.linspace(file_num, file_num + month, month + 1) plt.plot(x, nino34, 'b') nino34_from_data = index_calculation.get_nino34_from_data(file_num, month) plt.plot(x, nino34_from_data, 'r', linewidth=1) print(math_tool.pearson_distance(nino34, nino34_from_data)) # plt.legend(['prediction', 'ZCdata'], loc='upper right') plt.show() # file_helper_unformatted.write_data(file_num, model.predict(data_x)[0]) # for convolutional model only ssta # predict_data = np.empty([1, 540])
# predict_data[0] = file_helper.read_data(file_num) # file_helper.write_data(file_num, model.predict(predict_data)[0]) # for dense_model ssta and ha for last in range(last_month): predict_data = np.empty([1, 20, 27, 2]) data_y = np.empty([1, 20, 27, 2]) if model_type == 'conv': data_x = np.empty([1, 20, 27, 2]) else: data_x = np.empty([1, 1080]) predict_data[0] = file_helper_unformatted.read_data_sstaha(file_num + last) if is_retrain: predict_data = file_helper_unformatted.exchange_rows(predict_data) nino34 = [index_calculation.get_nino34(predict_data[0])] # data preprocess z-zero if data_preprocess_method == 'preprocess_Z': predict_data = data_preprocess.preprocess_Z(predict_data, 0) # data preprocess dimensionless if data_preprocess_method == 'dimensionless': redict_data = data_preprocess.dimensionless(predict_data, 0) # data preprocess 0-1 if data_preprocess_method == 'preprocess_01': predict_data = data_preprocess.preprocess_01(predict_data, 0) # data preprocess no month mean if data_preprocess_method == 'nomonthmean': predict_data = data_preprocess.no_month_mean(predict_data, 0) if model_type == 'conv':