if __name__ == "__main__": args = docopt(__doc__) # load test data with open("data/snli/test.pkl", "rb") as fin: test = pickle.load(fin) input_embeddings = np.load("data/snli/input_embeddings.npy") model = dy.Model() parsed = False if args["cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings=False, hidden_dim=100, ) if args["--inv-temp"] is not None: net.inv_temp = float(args["--inv-temp"]) print("Inverse temperature set to " + str(net.inv_temp)) elif args["ltr-cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings=False, hidden_dim=100, order=1, ) elif args["rtl-cyk"]: net = networks.CYK(
return np.median(ranks), accuracy10, accuracy100 if __name__ == "__main__": args = docopt(__doc__) model = dy.Model() update_embeddings = bool(args["--update-embeddings"]) input_embeddings = np.load("data/dicteval/input_embeddings.reduced.npy") hidden_dim = 256 parsed = False if args["cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, ) elif args["ltr-cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings = update_embeddings, hidden_dim = hidden_dim, order = 1, ) elif args["rtl-cyk"]: net = networks.CYK( model, input_embeddings, update_embeddings = update_embeddings,
args = docopt(__doc__) # load the embeddings and vocab embeddings = np.load("data/snli2/input_embeddings.npy") vocab = [] with open("data/snli2/input_vocab.txt") as fin: for line in fin: vocab.append(line.strip().split("\t")[0]) bacov = {n: i for i, n in enumerate(vocab)} dim = embeddings.shape[1] # initialise and restore the model model = dy.Model() net = networks.CYK( model, embeddings, update_embeddings = False, hidden_dim = 100, ) model.load(args["<model-file>"]) net.inv_temp = float(args["--inv-temp"]) while True: try: words = list(map(lambda x: cleanup(x), input("Sentence: ").split(" "))) indices = [bacov[w] for w in words if w in bacov] n = len(indices) _, weights = net(np.reshape(indices, (n, 1)), ) tree = build_subtree(weights, words) tree.render("/home/jm864/public_html/graphviz.gv", view = False) except (EOFError, ValueError): break