def get_example_3():
    """get a binarized example, whose original graph is
    more complicated than the above example
    """
    g = DiGraph()
    g.add_nodes_from(range(1, 10))
    g.add_edges_from([(1, 2), (1, 3), (1, 7), (2, 4), (2, 5), (2, 6), (2, 7),
                      (3, 8), (3, 9)])
    rewards = range(1, 10)
    for r, n in zip(rewards, g.nodes()):
        g.node[n]['r'] = r

    # all edges have cost 2 except 1 -> 2 and 1 -> 3(cost 1)
    for s, t in g.edges():
        g[s][t]['c'] = 2
    g[1][2]['c'] = 1
    g[1][3]['c'] = 1

    g = binarize_dag(g,
                     vertex_weight_key='r',
                     edge_weight_key='c',
                     dummy_node_name_prefix='d_')

    # parameters and expected output
    U = [0, 2, 3, 4, 100]
    expected_edges_set = [
        [],
        [(1, 7)],
        [(1, 'd_1'), ('d_1', 3), (3, 9)],
        [(1, 'd_1'), ('d_1', 3), (3, 9), ('d_1', 2)],
        # (1, 7) removed to make it a tree
        list(set(g.edges()) - set([(1, 7)]))
    ]

    return (g, U, expected_edges_set)
예제 #2
0
def ConstructShortestPathTree(G: DiGraph,
                              source,
                              target=None,
                              weight="weight"):
    from collections import defaultdict
    INF = float('inf')
    dist = defaultdict(lambda: INF)
    parent = defaultdict(lambda: None)
    dist[source] = 0
    q = [(0, source)]
    visited = defaultdict(lambda: False)
    while q:
        s = heappop(q)
        cost, _from = s
        if visited[s]: continue
        visited[s] = True
        for to in G[_from]:
            if dist[to] > G[_from][to][weight] + cost:
                dist[to] = G[_from][to][weight] + cost
                parent[to] = _from
                heappush(q, (dist[to], to))
    T = nx.DiGraph()
    T.add_nodes_from([(node, {
        "parent": parent[node],
        "distance": dist[node]
    }) for node in G.nodes().keys()])
    edges = []
    for to in parent:
        _from = parent[to]
        if _from is not None:
            edges.append((_from, to, {f"{weight}": G[_from][to][weight]}))
    T.add_edges_from(edges)

    return T
예제 #3
0
파일: crm.py 프로젝트: rubiruchi/ac_ltl_wsn
def build_crm(roadmap_dir='./build_roadmap/roadmap_2D.p',
              wsn_rate_dir='./wsn_routing/rate_map.p',
              ws_img_dir='./build_roadmap/ws_img.p'):
    '''
    build combined roadmap, crm
    via load roadmap and merge in wsn_rate info
    '''
    roadmap_edges = pickle.load(open(roadmap_dir, 'rb'))
    wsn_rate, wifis_loc, sink_loc = pickle.load(open(wsn_rate_dir, 'rb'))
    img = pickle.load(open(ws_img_dir, 'rb'))
    crm = DiGraph(name='combined_model',
                  ws_img=img,
                  wifis=wifis_loc,
                  sink=sink_loc)
    for e in roadmap_edges:
        (f_node, t_node) = e
        near_f_node = min(wsn_rate.keys(), key=lambda p: dist_2D(p, f_node))
        f_node_rate = wsn_rate[near_f_node]
        crm.add_node(f_node, rate=f_node_rate)
        near_t_node = min(wsn_rate.keys(), key=lambda p: dist_2D(p, t_node))
        t_node_rate = wsn_rate[near_t_node]
        crm.add_node(t_node, rate=t_node_rate)
        # interpolation
        dist_e = dist_2D(f_node, t_node)
        f_t_rate = intp_rate(f_node_rate, t_node_rate)
        crm.add_edge(f_node, t_node, rate=f_t_rate, dist=dist_e)
        t_f_rate = intp_rate(t_node_rate, f_node_rate)
        crm.add_edge(t_node, f_node, rate=t_f_rate, dist=dist_e)
    print '---crm constructed from %s and %s, %d nodes, %d edges---' % (
        roadmap_dir, wsn_rate_dir, len(crm.nodes()), len(crm.edges()))
    return crm
예제 #4
0
    def explicitPath(self,
                     G: DiGraph,
                     T: DiGraph,
                     ksp: List[tuple],
                     target,
                     weight="weight") -> List[tuple]:
        Edges = []
        Edges_append = Edges.append
        totalCost = 0
        if self.prefPath >= 0:
            edges = ksp[self.prefPath].edges
            lastEdgeNum = -1
            heapSidetrack = self.heap.sidetrack
            for i in reversed(range(len(edges))):
                currentEdge = edges[i]
                if currentEdge.toNode == heapSidetrack.fromNode:
                    lastEdgeNum = i
                    break
            for i in range(lastEdgeNum + 1):
                Edges_append(edges[i])
                totalCost += edges[i].weight
            Edges_append(self.heap.sidetrack)
            totalCost += self.heap.sidetrack.weight

        current = self.heap.sidetrack.toNode
        T_nodes = T.nodes()
        while current != target:
            nxt = T_nodes[current]["parent"]
            edgeWeight = T_nodes[current]["distance"] - T_nodes[nxt]["distance"]
            Edges_append(Edge(current, nxt, weight=edgeWeight))
            totalCost += edgeWeight
            current = nxt

        return explicitPath(edges=Edges, totalCost=totalCost)
def DuoBA_from_ltls(hard_spec, soft_spec):
    hard_buchi = buchi_from_ltl(hard_spec, 'hard_buchi')
    soft_buchi = buchi_from_ltl(soft_spec, 'soft_buchi')
    hard_symbols = hard_buchi.graph['symbols']
    soft_symbols = soft_buchi.graph['symbols']
    symbols = set(hard_symbols).union(set(soft_symbols))
    DuoBA = DiGraph(type='safe_buchi',
                    hard=hard_buchi,
                    soft=soft_buchi,
                    symols=symbols)
    initial = set()
    accept = set()
    for (h_node, s_node, l) in cartesian_product(hard_buchi.nodes(),
                                                 soft_buchi.nodes(), [1, 2]):
        DuoNode = (h_node, s_node, l)
        DuoBA.add_node(DuoNode, hard=h_node, soft=s_node, level=l)
        if (h_node in hard_buchi.graph['initial']
                and s_node in soft_buchi.graph['initial'] and l == 1):
            initial.add(DuoNode)
        if (h_node in hard_buchi.graph['accept'] and l == 1):
            accept.add(DuoNode)
    DuoBA.graph['accept'] = accept
    DuoBA.graph['initial'] = initial
    for f_duonode in DuoBA.nodes():
        for t_duonode in DuoBA.nodes():
            f_h_node, f_s_node, f_level = check_duo_attr(DuoBA, f_duonode)
            t_h_node, t_s_node, t_level = check_duo_attr(DuoBA, t_duonode)
            if (t_h_node not in DuoBA.graph['hard'].neighbors(f_h_node) or
                    t_s_node not in DuoBA.graph['soft'].neighbors(f_s_node)):
                continue
                # relaxed because no common input alphabets are enabled
            hardguard = DuoBA.graph['hard'].edges[f_h_node, t_h_node]['guard']
            softguard = DuoBA.graph['soft'].edges[f_s_node, t_s_node]['guard']
            if ((f_h_node not in DuoBA.graph['hard'].graph['accept']
                 and f_level == 1 and t_level == 1)
                    or (f_h_node in DuoBA.graph['hard'].graph['accept']
                        and f_level == 1 and t_level == 2)
                    or (f_s_node not in DuoBA.graph['soft'].graph['accept']
                        and f_level == 2 and t_level == 2)
                    or (f_s_node in DuoBA.graph['soft'].graph['accept']
                        and f_level == 2 and t_level == 1)):
                DuoBA.add_edge(f_duonode,
                               t_duonode,
                               hardguard=hardguard,
                               softguard=softguard)
    return DuoBA
예제 #6
0
파일: buchi.py 프로젝트: MengGuo/P_MAS_TG
def DuoBA_from_ltls(hard_spec, soft_spec):
    hard_buchi = buchi_from_ltl(hard_spec, 'hard_buchi')
    soft_buchi = buchi_from_ltl(soft_spec, 'soft_buchi')
    hard_symbols = hard_buchi.graph['symbols']
    soft_symbols = soft_buchi.graph['symbols']
    symbols = set(hard_symbols).union(set(soft_symbols))
    DuoBA = DiGraph(type='safe_buchi', hard=hard_buchi, soft=soft_buchi, symols=symbols)
    initial = set()
    accept = set()
    for (h_node, s_node, l) in cartesian_product(hard_buchi.nodes(), soft_buchi.nodes(), [1, 2]):
        DuoNode = (h_node, s_node, l)
        DuoBA.add_node(DuoNode,hard=h_node, soft=s_node, level=l)
        if (h_node in hard_buchi.graph['initial'] and 
            s_node in soft_buchi.graph['initial'] and l == 1):
            initial.add(DuoNode)
        if (h_node in hard_buchi.graph['accept'] and l == 1):
            accept.add(DuoNode)
    DuoBA.graph['accept'] = accept
    DuoBA.graph['initial'] = initial
    for f_duonode in DuoBA.nodes():
        for t_duonode in DuoBA.nodes():
            f_h_node, f_s_node, f_level = check_duo_attr(DuoBA, f_duonode)
            t_h_node, t_s_node, t_level = check_duo_attr(DuoBA, t_duonode)
            if (t_h_node not in DuoBA.graph['hard'].neighbors(f_h_node) or 
                t_s_node not in DuoBA.graph['soft'].neighbors(f_s_node)):
                continue
                # relaxed because no common input alphabets are enabled
            hardguard = DuoBA.graph['hard'].edges[f_h_node,t_h_node]['guard']
            softguard = DuoBA.graph['soft'].edges[f_s_node,t_s_node]['guard']
            if ((f_h_node not in DuoBA.graph['hard'].graph['accept'] and 
                f_level == 1 and t_level == 1) or 
                (f_h_node in DuoBA.graph['hard'].graph['accept'] and 
                f_level == 1 and t_level == 2) or 
                (f_s_node not in DuoBA.graph['soft'].graph['accept'] and 
                f_level == 2 and t_level == 2) or 
                (f_s_node in DuoBA.graph['soft'].graph['accept'] and 
                f_level == 2 and t_level == 1)):
                DuoBA.add_edge(f_duonode, t_duonode, hardguard=hardguard, softguard=softguard)
    return DuoBA
예제 #7
0
class BoardGraph(object):
    def walk(self, board, size_limit=maxint):
        pending_nodes = []
        self.graph = DiGraph()
        self.start = board.display(cropped=True)
        self.graph.add_node(self.start)
        pending_nodes.append(self.start)
        self.min_domino_count = len(board.dominoes)
        while pending_nodes:
            if len(self.graph) >= size_limit:
                raise GraphLimitExceeded(size_limit)
            state = pending_nodes.pop()
            board = Board.create(state, border=1)
            dominoes = set(board.dominoes)
            self.min_domino_count = min(self.min_domino_count, len(dominoes))
            for domino in dominoes:
                dx, dy = domino.direction
                self.try_move(state, domino, dx, dy, pending_nodes)
                self.try_move(state, domino, -dx, -dy, pending_nodes)
        self.last = state
        return set(self.graph.nodes())

    def try_move(self, old_state, domino, dx, dy, pending_states):
        try:
            new_state = self.move(domino, dx, dy)
            move = domino.describe_move(dx, dy)
            if not self.graph.has_node(new_state):
                # new node
                self.graph.add_node(new_state)
                pending_states.append(new_state)
            self.graph.add_edge(old_state, new_state, move=move)
        except BoardError:
            pass

    def move(self, domino, dx, dy):
        """ Move a domino and calculate the new board state.

        Afterward, put the board back in its original state.
        @return: the new board state
        @raise BoardError: if the move is illegal
        """
        domino.move(dx, dy)
        try:
            board = domino.head.board
            if not board.isConnected():
                raise BoardError('Board is not connected.')
            if board.hasLoner():
                raise BoardError('Board has a lonely domino.')
            return board.display(cropped=True)
        finally:
            domino.move(-dx, -dy)
예제 #8
0
 def setDelta(self,
              G: DiGraph,
              T: DiGraph,
              weight="weight") -> Dict[tuple, float]:
     T_nodes = T.nodes()
     G_edges = G.edges()
     for edge in G_edges:
         _from, to = edge
         T_from, T_to = T_nodes[_from], T_nodes[to]
         G_edge = G_edges[edge]
         tp = T_from["parent"]
         # 全てのedge \in G\Tに対してdelta(potential)を計算する
         if tp is None or tp != to:  # tp = to <-> (_from, tp) == (_from, to)
             tmp = G_edge[weight] + T_to["distance"] - T_from["distance"]
             G_edge["delta"] = tmp if tmp == tmp else 0
예제 #9
0
파일: ac.py 프로젝트: rubiruchi/ac_ltl_wsn
 def construct_arg_crm(self):
     arg_crm = DiGraph()
     for wp_f in self.crm.nodes_iter():
         for d_f in iter(self.data_set):
             s_f = (wp_f, d_f)
             arg_crm.add_node(s_f)
             for wp_t in self.crm.neighbors(wp_f):
                 d_evolve = d_f - self.crm.edge[wp_f][wp_t][
                     'rate'] * self.sample_time - 2 * self.quant_size
                 d_t = [d for d in self.data_set if d >= d_evolve][0]
                 s_t = (wp_t, d_t)
                 arg_crm.add_edge(s_f, s_t, weight=1.0)
     print '---static argumented crm constructed: %d nodes, %d edges----' % (
         len(arg_crm.nodes()), len(arg_crm.edges()))
     self.arg_crm = arg_crm
def get_example_5():
    g = DiGraph()
    g.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 4), (2, 5), (2, 6)])
    for s, t in g.edges():
        g[s][t]['c'] = 1
    g[1][4]['c'] = 0
    g[2][4]['c'] = 0
    g[2][6]['c'] = 3
    for n in g.nodes():
        g.node[n]['r'] = 1
    g.node[3]['r'] = 10
    g.node[4]['r'] = 100
    g.node[5]['r'] = 11

    U = [10]
    # sub-optimal answer actually
    expected_edge_set = [[(0, 2), (2, 4), (2, 5), (2, 6)]]
    return (g, U, expected_edge_set)
예제 #11
0
파일: mdp.py 프로젝트: mingyucai/P_MDP_TG
def find_SCCs(mdp, Sneg):
    #----simply find strongly connected components----
    print 'Remaining states size', len(Sneg)
    SCC  = set()
    simple_digraph = DiGraph()
    A = dict()
    for s in mdp.nodes():
        A[s] = mdp.node[s]['act'].copy()
    for s_f in Sneg:
        if s_f not in simple_digraph:
            simple_digraph.add_node(s_f)
        for s_t in mdp.successors_iter(s_f):
            if s_t in Sneg:
                simple_digraph.add_edge(s_f,s_t)
    print "SubGraph of one Sf: %s states and %s edges" %(str(len(simple_digraph.nodes())), str(len(simple_digraph.edges())))
    sccs = strongly_connected_component_subgraphs(simple_digraph)
    for scc in sccs:
        SCC.add(frozenset(scc.nodes()))    
    return SCC, A
예제 #12
0
def create_graph_with_new_data():
    '''
    A DiGraph object holds directed edges
    - Parallel edges still aren't allowed
        - For a Digraph, two edges are parallel if they connect the same ordered pair of vertices
            - Thus, two edges that connect the same vertices but go in different directions are not parallel
    '''
    # Create with edge list
    g = DiGraph([(1, 5), (5, 1)]) 
    #g = Graph([(1, 5), (5, 1)]) 
    g.add_node(6)
    print(g.nodes()) # [1, 5, 6]
    # These are two distinct edges
    print(g.edges()) # [(1, 5), (5, 1)]
    print(g.neighbors(1)) # [5]
    print(g.neighbors(5)) # [1]
    g.edge[1][5]['foo'] = 'bar'
    print(g.edge[1][5]) # {'foo': 'bar'}
    print(g.edge[5][1]) # {}
예제 #13
0
def get_example_5():
    g = DiGraph()
    g.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4),
                      (2, 4), (2, 5), (2, 6)])
    for s, t in g.edges():
        g[s][t]['c'] = 1
    g[1][4]['c'] = 0
    g[2][4]['c'] = 0
    g[2][6]['c'] = 3
    for n in g.nodes():
        g.node[n]['r'] = 1
    g.node[3]['r'] = 10
    g.node[4]['r'] = 100
    g.node[5]['r'] = 11

    U = [10]
    # sub-optimal answer actually
    expected_edge_set = [[(0, 2), (2, 4), (2, 5), (2, 6)]]
    return (g, U, expected_edge_set)
예제 #14
0
    def eppstein_ksp(self,
                     G: DiGraph,
                     source: Any,
                     target: Any,
                     K: int = 1,
                     weight="weight") -> List[NamedTuple]:

        self.target = target
        T = ConstructShortestPathTree(
            G.reverse(), target, weight=weight)  # reversed shortest path tree
        self.setDelta(G, T, weight=weight)
        nodeHeaps = dict()
        outrootHeaps = dict()

        for node in G.nodes():
            self.computeH_out(node, G, nodeHeaps, weight=weight)

        rootArrayHeap = EppsteinArrayHeap()
        self.computeH_T_recursive(target, rootArrayHeap, nodeHeaps,
                                  outrootHeaps, T)

        hg = EppsteinHeap(Edge(source, source, weight=0))
        ksp = []
        pathPQ = []
        heappush(pathPQ, EppsteinPath(hg, -1, T.nodes()[source]["distance"]))
        k = 0

        while k < K and pathPQ:
            # Checked
            kpathImplicit = heappop(pathPQ)
            kpath = kpathImplicit.explicitPath(G,
                                               T,
                                               ksp,
                                               target,
                                               weight=weight)
            ksp.append(kpath)
            self.addHeapEdgeChildrenToQueue(kpathImplicit, ksp,
                                            pathPQ)  # heap edge
            self.addCrossEdgeChildToQueue(outrootHeaps, kpathImplicit, k, ksp,
                                          pathPQ)  # cross edge
            k += 1

        return ksp
def get_example_4():
    g = DiGraph()
    g.add_edges_from([
        (0, 1),
        (1, 2),
        (2, 3),
        (2, 14),  # tree 1
        (2, 15),
        (3, 16),
        (3, 17),
        (0, 4),
        (4, 5),
        (4, 6),  # tree 2
        (5, 11),
        (6, 11),
        (6, 12),
        (6, 13),
        (0, 7),
        (7, 8),
        (7, 9),  # tree 3
        (8, 10),
        (8, 11),
        (9, 12),
        (9, 13)
    ])
    for s, t in g.edges():
        g[s][t]['c'] = 1
    for n in g.nodes():
        g.node[n]['r'] = 1
    g.node[10]['r'] = 2

    U = [7]
    expected_edge_set = [[
        (0, 7),
        (7, 8),
        (7, 9),  # tree 3
        (8, 10),
        (8, 11),
        (9, 12),
        (9, 13)
    ]]
    return (g, U, expected_edge_set)
예제 #16
0
def get_example_4():
    g = DiGraph()
    g.add_edges_from([(0, 1), (1, 2), (2, 3), (2, 14),  # tree 1
                      (2, 15), (3, 16), (3, 17),
                      (0, 4), (4, 5), (4, 6),  # tree 2
                      (5, 11), (6, 11), (6, 12), (6, 13),
                      (0, 7), (7, 8), (7, 9),  # tree 3
                      (8, 10), (8, 11), (9, 12), (9, 13)])
    for s, t in g.edges():
        g[s][t]['c'] = 1
    for n in g.nodes():
        g.node[n]['r'] = 1
    g.node[10]['r'] = 2

    U = [7]
    expected_edge_set = [
        [(0, 7), (7, 8), (7, 9),  # tree 3
         (8, 10), (8, 11), (9, 12), (9, 13)]
    ]
    return (g, U, expected_edge_set)
def get_example_6():
    # IN-OPTIMAL CASE
    g = DiGraph()
    g.add_edges_from([(0, 1), (0, 2), (1, 3), (1, 4), (2, 4), (2, 5)])
    for s, t in g.edges():
        g[s][t]['c'] = 0
    g[1][3]['c'] = 4
    g[1][4]['c'] = 4
    g[2][4]['c'] = 2
    g[2][5]['c'] = 1
    for n in g.nodes():
        g.node[n]['r'] = 0
    g.node[3]['r'] = 1
    g.node[4]['r'] = 100
    g.node[5]['r'] = 1

    U = [7]
    # sub-optimal answer actually
    expected_edge_set = [[(0, 2), (2, 4), (2, 5)]]
    return (g, U, expected_edge_set)
예제 #18
0
def get_example_6():
    # IN-OPTIMAL CASE
    g = DiGraph()
    g.add_edges_from([(0, 1), (0, 2), (1, 3),
                      (1, 4), (2, 4), (2, 5)])
    for s, t in g.edges():
        g[s][t]['c'] = 0
    g[1][3]['c'] = 4
    g[1][4]['c'] = 4
    g[2][4]['c'] = 2
    g[2][5]['c'] = 1
    for n in g.nodes():
        g.node[n]['r'] = 0
    g.node[3]['r'] = 1
    g.node[4]['r'] = 100
    g.node[5]['r'] = 1

    U = [7]
    # sub-optimal answer actually
    expected_edge_set = [[(0, 2), (2, 4), (2, 5)]]
    return (g, U, expected_edge_set)
예제 #19
0
def get_example_3():
    """get a binarized example, whose original graph is
    more complicated than the above example
    """
    g = DiGraph()
    g.add_nodes_from(range(1, 10))
    g.add_edges_from([(1, 2), (1, 3), (1, 7),
                      (2, 4), (2, 5), (2, 6),
                      (2, 7), (3, 8), (3, 9)])
    rewards = range(1, 10)
    for r, n in zip(rewards, g.nodes()):
        g.node[n]['r'] = r
        
    # all edges have cost 2 except 1 -> 2 and 1 -> 3(cost 1)
    for s, t in g.edges():
        g[s][t]['c'] = 2
    g[1][2]['c'] = 1
    g[1][3]['c'] = 1
    
    g = binarize_dag(g,
                     vertex_weight_key='r',
                     edge_weight_key='c',
                     dummy_node_name_prefix='d_')
    
    # parameters and expected output
    U = [0, 2, 3, 4, 100]
    expected_edges_set = [
        [],
        [(1, 7)],
        [(1, 'd_1'), ('d_1', 3), (3, 9)],
        [(1, 'd_1'), ('d_1', 3), (3, 9), ('d_1', 2)],
        # (1, 7) removed to make it a tree
        list(set(g.edges()) - set([(1, 7)]))
    ]
    
    return (g, U, expected_edges_set)
예제 #20
0
파일: mdp.py 프로젝트: mingyucai/P_MDP_TG
def find_MECs(mdp, Sneg):
    #----implementation of Alg.47 P866 of Baier08----
    print 'Remaining states size', len(Sneg)
    U = mdp.graph['U']
    A = dict()
    for s in Sneg:
        A[s] = mdp.node[s]['act'].copy()
        if not A[s]:
            print "Isolated state"
    MEC = set()
    MECnew = set()
    MECnew.add(frozenset(Sneg))
    #----
    k = 0
    while MEC != MECnew:
        print "<============iteration %s============>" %k
        k +=1
        MEC = MECnew
        MECnew = set()
        print "MEC size: %s" %len(MEC)
        print "MECnew size: %s" %len(MECnew)
        for T in MEC:
            R = set()
            T_temp = set(T)
            simple_digraph = DiGraph()
            for s_f in T_temp:
                if s_f not in simple_digraph:
                    simple_digraph.add_node(s_f)
                for s_t in mdp.successors_iter(s_f):
                    if s_t in T_temp:
                        simple_digraph.add_edge(s_f,s_t)
            print "SubGraph of one MEC: %s states and %s edges" %(str(len(simple_digraph.nodes())), str(len(simple_digraph.edges())))
            Sccs = strongly_connected_component_subgraphs(simple_digraph)
            i = 0
            for Scc in Sccs:
                i += 1
                if (len(Scc.edges())>=1):
                    for s in Scc.nodes():
                        U_to_remove = set() 
                        for u in A[s]:
                            for t in mdp.successors_iter(s):
                                if ((u  in mdp.edge[s][t]['prop'].keys()) and (t not in Scc.nodes())):
                                    U_to_remove.add(u)
                        A[s].difference_update(U_to_remove)
                        if not A[s]:                            
                            R.add(s)
            while R:
                s = R.pop()
                T_temp.remove(s)
                for f in mdp.predecessors(s):
                    if f in T_temp:
                        A[f].difference_update(set(mdp.edge[f][s]['prop'].keys()))
                        if not A[f]:
                            R.add(f)
            New_Sccs = strongly_connected_component_subgraphs(simple_digraph)
            j = 0
            for Scc in New_Sccs:
                j += 1
                if (len(Scc.edges()) >= 1):
                    common = set(Scc.nodes()).intersection(T_temp)
                    if common:
                        MECnew.add(frozenset(common))
    #---------------
    print 'Final MEC and MECnew size:', len(MEC)
    return MEC, A
예제 #21
0
class Buchi(object):
    """
    construct buchi automaton graph
    """
    def __init__(self, task):
        """
        initialization
        :param task: task specified in LTL
        """
        # task specified in LTL
        self.formula = task.formula
        self.subformula = task.subformula
        self.number_of_robots = task.number_of_robots
        # graph of buchi automaton
        self.buchi_graph = DiGraph(type='buchi', init=[], accept=[])

        # minimal length (in terms of number of transitions) between a pair of nodes
        self.min_length = dict()

    def construct_buchi_graph(self):
        """
        parse the output of the program ltl2ba and build the buchi automaton
        """
        program = 'online'
        if program == 'offline':
            # directory of the program ltl2ba
            dirname = os.path.dirname(__file__)
            # output of the program ltl2ba
            output = subprocess.check_output(dirname + "/./ltl2ba -f \"" +
                                             self.formula + "\"",
                                             shell=True).decode("utf-8")
            # find all states/nodes in the buchi automaton
            states = r'\n(\w+):'
            if_fi = r':\n\tif(.*?)fi'

        elif program == 'online':
            para = {
                'user-agent':
                'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36',
                'formule': self.formula,
                'convert': 'Convert',
                'image': 'on',
                'descr': 'on',
                'flysimpl': 'on',
                'latsimpl': 'on',
                'sccsimpl': 'on',
                'fjtofj': 'on'
            }
            html_doc = requests.post(
                'http://www.lsv.fr/~gastin/ltl2ba/index.php', data=para)
            # print(html_doc.text)
            output = BeautifulSoup(html_doc.text, 'html.parser').tt.string
            states = r'\n(\w+) :'
            if_fi = r' :(.*?)fi'

        # find all states/nodes in the buchi automaton
        state_re = re.compile(states)
        state_group = re.findall(state_re, output)
        # find initial and accepting states
        init = [s for s in state_group if 'init' in s]
        accept = [s for s in state_group if 'accept' in s]
        # finish the inilization of the graph of the buchi automaton
        self.buchi_graph.graph['init'] = init
        self.buchi_graph.graph['accept'] = accept

        order_key = list(self.subformula.keys())
        order_key.sort(reverse=True)
        # for each state/node, find it transition relations
        for state in state_group:
            # add node
            self.buchi_graph.add_node(state)
            # loop over all transitions starting from current state
            state_if_fi = re.findall(state + if_fi, output, re.DOTALL)
            if state_if_fi:
                relation_group = re.findall(r':: (\(.*?\)) -> goto (\w+)\n\t',
                                            state_if_fi[0])
                for symbol, next_state in relation_group:
                    sym = symbol
                    # delete edges with multiple subformulas
                    num_pos = 0
                    for sym in symbol.split(' && '):
                        if '!' not in sym:
                            num_pos += 1
                    if num_pos >= 2: continue
                    # whether the edge is feasible in terms of atomic propositions
                    for k in order_key:
                        symbol = symbol.replace('e{0}'.format(k),
                                                self.subformula[k])
                    # get the trurh assignment
                    truth_table = self.get_truth_assignment(symbol)
                    # infeasible transition
                    if not truth_table: continue
                    # add edge
                    self.buchi_graph.add_edge(state,
                                              next_state,
                                              truth=truth_table,
                                              symbol=sym)
            else:
                state_skip = re.findall(state + r'(.*?)skip\n', output,
                                        re.DOTALL)
                if state_skip:
                    self.buchi_graph.add_edge(state, state, truth='1')

    def get_truth_assignment(self, symbol):
        """
        get one set of truth assignment that makes the symbol true
        :param symbol: logical expression which controls the transition
        :return: a set of truth assignment enables the symbol
        """
        # empty symbol
        if symbol == '(1)':
            return '1'
        # non-empty symbol
        else:
            exp = symbol.replace('||', '|').replace('&&',
                                                    '&').replace('!', '~')
            exp_dnf = to_dnf(exp).__str__()
            # loop over each clause
            for clause in exp_dnf.split(' | '):
                truth_table = dict()
                clause = clause.strip('(').strip(')')
                literals = clause.split(' & ')
                # loop over each literal
                for literal in literals:
                    if '~' not in literal:
                        truth_table[literal] = True
                    else:
                        truth_table[literal[1:]] = False
                # whether exist a literal with positive and negative version
                if len(literals) != len(truth_table):
                    continue
                else:
                    # exist a robot with two positive literals
                    true_key = [
                        truth.split('_')[1] for truth in truth_table.keys()
                        if truth_table[truth]
                    ]
                    if len(true_key) != len(set(true_key)):
                        continue
                    else:
                        # print(clause, truth_table)
                        return truth_table
            return dict()

    def get_minimal_length(self):
        """
        search the shortest path from a node to another, i.e., # of transitions in the path
        :return: 
        """
        # loop over pairs of buchi states
        for head_node in self.buchi_graph.nodes():
            for tail_node in self.buchi_graph.nodes():
                # head_node = tail_node, and tail_node is an accepting state
                if head_node != tail_node and 'accept' in tail_node:
                    try:
                        length, _ = nx.algorithms.single_source_dijkstra(
                            self.buchi_graph,
                            source=head_node,
                            target=tail_node)
                    # couldn't find a path from head_node to tail_node
                    except nx.exception.NetworkXNoPath:
                        length = np.inf
                    self.min_length[(head_node, tail_node)] = length
                # head_node != tail_node and tail_node is an accepting state
                # move 1 step forward to all reachable states of head_node then calculate the minimal length
                elif head_node == tail_node and 'accept' in tail_node:
                    length = np.inf
                    for suc in self.buchi_graph.succ[head_node]:
                        try:
                            len1, _ = nx.algorithms.single_source_dijkstra(
                                self.buchi_graph, source=suc, target=tail_node)
                        except nx.exception.NetworkXNoPath:
                            len1 = np.inf
                        if len1 < length:
                            length = len1 + 1
                    self.min_length[(head_node, tail_node)] = length

    def get_feasible_accepting_state(self):
        """
        get feasbile accepting/final state, or check whether an accepting state is feaasible
        :return:
        """
        accept = self.buchi_graph.graph['accept']
        self.buchi_graph.graph['accept'] = []
        for ac in accept:
            for init in self.buchi_graph.graph['init']:
                if self.min_length[(init, ac)] < np.inf and self.min_length[
                    (ac, ac)] < np.inf:
                    self.buchi_graph.graph['accept'].append(ac)
                    break
        if not self.buchi_graph.graph['accept']:
            print('No feasible accepting states!!!!!!!!! ')
            exit()

    def robot2region(self, symbol):
        """
        pair of robot and corresponding regions in the expression
        :param symbol: logical expression
        :return: robot index : regions
        eg: input:  exp = 'l1_1 & l3_1 & l4_1 & l4_6 | l3_4 & l5_6'
            output: {1: ['l1_1', 'l3_1', 'l4_1'], 4: ['l3_4'], 6: ['l4_6', 'l5_6']}
        """

        robot_region = dict()
        for r in range(self.number_of_robots):
            findall = re.findall(r'(l\d+?_{0})[^0-9]'.format(r + 1), symbol)
            if findall:
                robot_region[str(r + 1)] = findall

        return robot_region
예제 #22
0
class tree(object):
    """ construction of prefix and suffix tree
    """
    def __init__(self, ts, buchi_graph, init, base=1e3, seg='pre'):
        """
        :param ts: transition system
        :param buchi_graph:  Buchi graph
        :param init: product initial state
        """
        self.robot = 1
        self.goals = []
        self.ts = ts
        self.buchi_graph = buchi_graph
        self.init = init
        self.dim = len(self.ts['workspace'])
        self.tree = DiGraph(type='PBA', init=init)
        label = self.label(init[0])
        if label != '':
            label = label + '_' + str(1)
        # accepting state before current node
        acc = set()
        if 'accept' in init[1]:
            acc.add(init)
        self.tree.add_node(init, cost=0, label=label, acc=acc)

        # already used skilles
        self.used = set()
        self.base = base
        self.seg = seg
        self.found = 10

    def sample(self, num):
        """
        sample point from the workspace
        :return: sampled point, tuple
        """
        q_rand = list(self.tree.nodes())[np.random.randint(
            self.tree.number_of_nodes(), size=1)[0]]
        x_rand = [0, 0]
        # parallel to one axis
        line = np.random.randint(2, size=1)[0]
        x_rand[line] = q_rand[0][line]
        # sample another component
        r = round(1 / num, 10)
        # x_rand[1-line] = int(np.random.uniform(0, 1, size=1)[0]/r) * r + r/2
        x_rand[1 - line] = round(
            np.random.randint(num, size=1)[0] * r + r / 2, 10)
        return tuple(x_rand)

    def acpt_check(self, q_min, q_new):
        """
        check the accepting state in the patg leading to q_new
        :param q_min:
        :param q_new:
        :return:
        """
        changed = False
        acc = set(self.tree.nodes[q_min]['acc'])  # copy
        if 'accept' in q_new[1]:
            acc.add(q_new)
            # print(acc)
            changed = True
        return acc, changed

    def extend(self, q_new, prec_list, succ_list, label_new):
        """
        :param: q_new: new state form: tuple (mulp, buchi)
        :param: near_v: near state form: tuple (mulp, buchi)
        :param: obs_check: check obstacle free  form: dict { (mulp, mulp): True }
        :param: succ: list of successor of the root
        :return: extending the tree
        """

        added = 0
        cost = np.inf
        q_min = ()
        for pre in prec_list:
            if pre in succ_list:  # do not extend if there is a corresponding root
                continue
            c = self.tree.nodes[pre]['cost'] + np.abs(
                q_new[0][0] - pre[0][0]) + np.abs(q_new[0][1] - pre[0][1])
            if c < cost:
                added = 1
                q_min = pre
                cost = c
        if added == 1:
            self.tree.add_node(q_new, cost=cost, label=label_new)
            self.tree.nodes[q_new]['acc'] = set(
                self.acpt_check(q_min, q_new)[0])
            self.tree.add_edge(q_min, q_new)
        return added

    def rewire(self, q_new, succ_list):
        """
        :param: q_new: new state form: tuple (mul, buchi)
        :param: near_v: near state form: tuple (mul, buchi)
        :param: obs_check: check obstacle free form: dict { (mulp, mulp): True }
        :return: rewiring the tree
        """
        for suc in succ_list:
            # root
            if suc == self.init:
                continue
            c = self.tree.nodes[q_new]['cost'] + np.abs(
                q_new[0][0] - suc[0][0]) + np.abs(q_new[0][1] - suc[0][1])
            delta_c = self.tree.nodes[suc]['cost'] - c
            # update the cost of node in the subtree rooted at near_vertex
            if delta_c > 0:
                self.tree.remove_edge(list(self.tree.pred[suc].keys())[0], suc)
                self.tree.add_edge(q_new, suc)
                edges = dfs_labeled_edges(self.tree, source=suc)
                acc, changed = self.acpt_check(q_new, suc)
                self.tree.nodes[suc]['acc'] = set(acc)
                for u, v, d in edges:
                    if d == 'forward':
                        self.tree.nodes[v][
                            'cost'] = self.tree.nodes[v]['cost'] - delta_c
                        if changed:
                            self.tree.nodes[v]['acc'] = set(
                                self.acpt_check(u, v)[0])  # copy
        # better to research the goal but abandon the implementation

    def prec(self, q_new, label_new, obs_check):
        """
        find the predcessor of q_new
        :param q_new: new product state
        :return: label_new: label of new
        """
        p_prec = []
        for vertex in self.tree.nodes:
            if q_new != vertex and self.obs_check(vertex, q_new[0], label_new, obs_check) \
                    and self.checkTranB(vertex[1], self.tree.nodes[vertex]['label'], q_new[1]):
                p_prec.append(vertex)
        return p_prec

    def succ(self, q_new, label_new, obs_check):
        """
        find the successor of q_new
        :param q_new: new product state
        :return: label_new: label of new
        """
        p_succ = []
        for vertex in self.tree.nodes:
            if q_new != vertex and self.obs_check(vertex, q_new[0], label_new, obs_check) \
                    and self.checkTranB(q_new[1], self.tree.nodes[q_new]['label'], vertex[1]):
                p_succ.append(vertex)
        return p_succ

    def obs_check(self, q_tree, x_new, label_new, obs_check):
        """
        check whether obstacle free along the line from q_tree to x_new
        :param q_tree: vertex in the tree
        :param x_new:
        :param label_new:
        :return: true or false
        """

        if q_tree[0][0] != x_new[0] and q_tree[0][1] != x_new[1]:
            return False

        if (q_tree[0], x_new) in obs_check.keys():
            return obs_check[(q_tree[0], x_new)]

        if (x_new, q_tree[0]) in obs_check.keys():
            return obs_check[(x_new, q_tree[0])]

        # the line connecting two points crosses an obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if LineString([Point(q_tree[0]),
                           Point(x_new)]).intersects(boundary):
                obs_check[(q_tree[0], x_new)] = False
                obs_check[(x_new, q_tree[0])] = False
                return False

        for (region, boundary) in iter(self.ts['region'].items()):
            if LineString([Point(q_tree[0]), Point(x_new)]).intersects(boundary) \
                    and region + '_' + str(1) != label_new \
                    and region + '_' + str(1) != self.tree.nodes[q_tree]['label']:
                obs_check[(q_tree[0], x_new)] = False
                obs_check[(x_new, q_tree[0])] = False
                return False

        obs_check[(q_tree[0], x_new)] = True
        obs_check[(x_new, q_tree[0])] = True
        return True

    def label(self, x):
        """
        generating the label of position state
        :param x: position
        :return: label
        """

        point = Point(x)
        # whether x lies within obstacle
        for (obs, boundary) in iter(self.ts['obs'].items()):
            if point.within(boundary):
                return obs

        # whether x lies within regions
        for (region, boundary) in iter(self.ts['region'].items()):
            if point.within(boundary):
                return region
        # x lies within unlabeled region
        return ''

    def checkTranB(self, b_state, x_label, q_b_new):
        """ decide valid transition, whether b_state --L(x)---> q_b_new
             :param b_state: buchi state
             :param x_label: label of x
             :param q_b_new buchi state
             :return True satisfied
        """
        b_state_succ = self.buchi_graph.succ[b_state]
        # q_b_new is not the successor of b_state
        if q_b_new not in b_state_succ:
            return False

        truth = self.buchi_graph.edges[(b_state, q_b_new)]['truth']
        if self.t_satisfy_b_truth(x_label, truth):
            return True

        return False

    def t_satisfy_b_truth(self, x_label, truth):
        """
        check whether transition enabled under current label
        :param x_label: current label
        :param truth: truth value making transition enabled
        :return: true or false
        """
        if truth == '1':
            return True

        true_label = [
            truelabel for truelabel in truth.keys() if truth[truelabel]
        ]
        for label in true_label:
            if label not in x_label:
                return False

        false_label = [
            falselabel for falselabel in truth.keys() if not truth[falselabel]
        ]
        for label in false_label:
            if label in x_label:
                return False

        return True

    def findpath(self, goals):
        """
        find the path backwards
        :param goals: goal state
        :return: dict path : cost
        """
        paths = OrderedDict()
        for i in range(len(goals)):
            goal = goals[i]
            path = [goal]
            s = goal
            while s != self.init:
                s = list(self.tree.pred[s].keys())[0]
                path.insert(0, s)
            paths[i] = [self.tree.nodes[goal]['cost'], path]
        return paths
예제 #23
0
class StadynaMcgAnalysis:
    def __init__(self):
        self.androGuardObjects = []

        self.nodes = {}
        self.nodes_id = {}
        self.entry_nodes = []
        self.G = DiGraph()

#         self.internal_methods = []
#self.GI = DiGraph()

    def analyseFile(self, vmx, apk):
        vm = vmx.get_vm()
        self.androGuardObjects.append((apk, vm, vmx))

        #         self.internal_methods.extend(vm.get_methods())

        #creating real internal nodes
        internal_called_methods = vmx.get_tainted_packages(
        ).stadyna_get_internal_called_methods()
        for method in internal_called_methods:
            class_name, method_name, descriptor = method

            nodeType = None
            if method_name == "<clinit>":
                nodeType = NODE_STATIC_INIT
            elif method_name == "<init>":
                nodeType = NODE_CONSTRUCTOR
            else:
                nodeType = NODE_METHOD
            n = self._get_node(nodeType, (class_name, method_name, descriptor))
            n.set_attribute(ATTR_CLASS_NAME, class_name)
            n.set_attribute(ATTR_METHOD_NAME, method_name)
            n.set_attribute(ATTR_DESCRIPTOR, descriptor)
            self.G.add_node(n.id)

        #creating real edges (nodes are already there)
        #currently we are working only with internal packages.
        for j in vmx.get_tainted_packages().get_internal_packages():
            src_class_name, src_method_name, src_descriptor = j.get_src(
                vm.get_class_manager())
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst(
                vm.get_class_manager())

            n1 = self._get_existed_node(
                (src_class_name, src_method_name, src_descriptor))
            #             n1.set_attribute(ATTR_CLASS_NAME, src_class_name)
            #             n1.set_attribute(ATTR_METHOD_NAME, src_method_name)
            #             n1.set_attribute(ATTR_DESCRIPTOR, src_descriptor)

            n2 = self._get_existed_node(
                (dst_class_name, dst_method_name, dst_descriptor))
            #             n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
            #             n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
            #             n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
            self.G.add_edge(n1.id, n2.id)

        #adding fake class nodes
        for method in internal_called_methods:
            src_class_name, src_method_name, src_descriptor = method
            if src_method_name == "<init>" or src_method_name == "<clinit>":
                n1 = self._get_existed_node(
                    (src_class_name, src_method_name, src_descriptor))
                n2 = self._get_node(NODE_FAKE_CLASS, src_class_name, None,
                                    False)
                n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
                if src_method_name == "<clinit>":
                    self.G.add_edge(n1.id, n2.id)
                elif src_method_name == "<init>":
                    self.G.add_edge(n2.id, n1.id)

        #real (external) reflection invoke nodes
        reflection_invoke_paths = analysis.seccon_get_invoke_method_paths(vmx)
        for j in reflection_invoke_paths:
            src_class_name, src_method_name, src_descriptor = j.get_src(
                vm.get_class_manager())
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst(
                vm.get_class_manager())

            n1 = self._get_existed_node(
                (src_class_name, src_method_name, src_descriptor))
            if n1 == None:
                logger.warning(
                    "Cannot find the node [%s], where reflection invoke is called!"
                    % (src_class_name, src_method_name, src_descriptor))
                continue

            key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name,
                                            src_descriptor, dst_class_name,
                                            dst_method_name, dst_descriptor,
                                            POSTFIX_REFL_INVOKE)
            n2 = self._get_node(NODE_REFL_INVOKE, key, LABEL_REFL_INVOKE, True)
            n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
            n2.set_attribute(ATTR_METHOD_NAME, src_method_name)
            n2.set_attribute(ATTR_DESCRIPTOR, src_descriptor)

            self.G.add_edge(n1.id, n2.id)

        #real (external) reflection new instance nodes
        reflection_newInstance_paths = analysis.seccon_get_newInstance_method_paths(
            vmx)
        for j in reflection_newInstance_paths:
            src_class_name, src_method_name, src_descriptor = j.get_src(
                vm.get_class_manager())
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst(
                vm.get_class_manager())

            n1 = self._get_existed_node(
                (src_class_name, src_method_name, src_descriptor))
            if n1 == None:
                logger.warning(
                    "Cannot find the node [%s], where reflection new instance is called!"
                    % (src_class_name, src_method_name, src_descriptor))
                continue

            key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name,
                                            src_descriptor, dst_class_name,
                                            dst_method_name, dst_descriptor,
                                            POSTFIX_REFL_NEWINSTANCE)
            n2 = self._get_node(NODE_REFL_NEWINSTANCE, key,
                                LABEL_REFL_NEWINSTANCE, True)
            n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
            n2.set_attribute(ATTR_METHOD_NAME, src_method_name)
            n2.set_attribute(ATTR_DESCRIPTOR, src_descriptor)

            self.G.add_edge(n1.id, n2.id)

        #adding fake entry points
        if apk != None:
            for i in apk.get_activities():
                j = bytecode.FormatClassToJava(i)
                n1 = self._get_existed_node(
                    (j, "onCreate", "(Landroid/os/Bundle;)V"))
                if n1 != None:
                    key = "%s %s %s %s" % (j, "onCreate",
                                           "(Landroid/os/Bundle;)V",
                                           POSTFIX_ACTIVITY)
                    n2 = self._get_node(NODE_FAKE_ACTIVITY, key,
                                        LABEL_ACTIVITY, False)
                    self.G.add_edge(n2.id, n1.id)
                    self.entry_nodes.append(n1.id)

            for i in apk.get_services():
                j = bytecode.FormatClassToJava(i)
                n1 = self._get_existed_node((j, "onCreate", "()V"))
                if n1 != None:
                    key = "%s %s %s %s" % (j, "onCreate", "()V",
                                           POSTFIX_SERVICE)
                    n2 = self._get_node(NODE_FAKE_SERVICE, key, LABEL_SERVICE,
                                        False)
                    self.G.add_edge(n2.id, n1.id)
                    self.entry_nodes.append(n1.id)

            for i in apk.get_receivers():
                j = bytecode.FormatClassToJava(i)
                n1 = self._get_existed_node(
                    (j, "onReceive",
                     "(Landroid/content/Context;Landroid/content/Intent;)V"))
                if n1 != None:
                    key = "%s %s %s %s" % (
                        j, "onReceive",
                        "(Landroid/content/Context;Landroid/content/Intent;)V",
                        POSTFIX_RECEIVER)
                    n2 = self._get_node(NODE_FAKE_SERVICE, key, LABEL_RECEIVER,
                                        False)
                    self.G.add_edge(n2.id, n1.id)
                    self.entry_nodes.append(n1.id)

        #fake permissions
        list_permissions = vmx.stadyna_get_permissions([])
        for x in list_permissions:
            for j in list_permissions[x]:
                if isinstance(j, PathVar):
                    continue

                src_class_name, src_method_name, src_descriptor = j.get_src(
                    vm.get_class_manager())
                dst_class_name, dst_method_name, dst_descriptor = j.get_dst(
                    vm.get_class_manager())

                n1 = self._get_existed_node(
                    (src_class_name, src_method_name, src_descriptor))
                if n1 == None:
                    logger.warning(
                        "Cannot find node [%s %s %s] for permission [%s]!" %
                        (src_class_name, src_method_name, src_descriptor, x))
                    continue

                #SOURCE, DEST, POSTFIX, PERMISSION_NAME
                key = "%s %s %s %s %s %s %s %s" % (
                    src_class_name, src_method_name, src_descriptor,
                    dst_class_name, dst_method_name, dst_descriptor,
                    POSTFIX_PERM, x)
                n2 = self._get_node(NODE_FAKE_PERMISSION, key, x, False)
                n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
                n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
                n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
                n2.set_attribute(ATTR_PERM_NAME, x)
                n2.set_attribute(ATTR_PERM_LEVEL, MANIFEST_PERMISSIONS[x][0])

                self.G.add_edge(n1.id, n2.id)

        #fake DexClassLoader nodes
        dyn_code_loading = analysis.seccon_get_dyncode_loading_paths(vmx)
        for j in dyn_code_loading:
            src_class_name, src_method_name, src_descriptor = j.get_src(
                vm.get_class_manager())
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst(
                vm.get_class_manager())

            n1 = self._get_existed_node(
                (src_class_name, src_method_name, src_descriptor))
            if n1 == None:
                logger.warning(
                    "Cannot find dexload node [%s]!" %
                    (src_class_name, src_method_name, src_descriptor))
                continue

            key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name,
                                            src_descriptor, dst_class_name,
                                            dst_method_name, dst_descriptor,
                                            POSTFIX_DEXLOAD)
            n2 = self._get_node(NODE_FAKE_DEXLOAD, key, LABEL_DEXLOAD, False)
            n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
            n2.set_attribute(ATTR_METHOD_NAME, src_method_name)
            n2.set_attribute(ATTR_DESCRIPTOR, src_descriptor)

            self.G.add_edge(n1.id, n2.id)

        # Specific Java/Android library
        for c in vm.get_classes():
            #if c.get_superclassname() == "Landroid/app/Service;" :
            #    n1 = self._get_node( c.get_name(), "<init>", "()V" )
            #    n2 = self._get_node( c.get_name(), "onCreate", "()V" )

            #    self.G.add_edge( n1.id, n2.id )
            if c.get_superclassname(
            ) == "Ljava/lang/Thread;" or c.get_superclassname(
            ) == "Ljava/util/TimerTask;":
                for i in vm.get_method("run"):
                    if i.get_class_name() == c.get_name():
                        n1 = self._get_node(NODE_METHOD,
                                            (i.get_class_name(), i.get_name(),
                                             i.get_descriptor()))
                        n2 = self._get_node(
                            NODE_METHOD,
                            (i.get_class_name(), "start", i.get_descriptor()))

                        # link from start to run
                        self.G.add_edge(n2.id, n1.id)
                        #n2.add_edge( n1, {} )

                        # link from init to start
                        for init in vm.get_method("<init>"):
                            if init.get_class_name() == c.get_name():
                                #TODO: Leaving _get_existed_node to check if all the nodes are included
                                #It is possible that internal_packages does not contain this node. Leaving _get_existed_node to check this
                                n3 = self._get_node(
                                    NODE_CONSTRUCTOR,
                                    (init.get_class_name(), "<init>",
                                     init.get_descriptor()))
                                self.G.add_edge(n3.id, n2.id)
                                #n3.add_edge( n2, {} )

    def addInvokePath(self, src, through, dst):
        src_class_name, src_method_name, src_descriptor = src
        dst_class_name, dst_method_name, dst_descriptor = dst
        through_class_name, through_method_name, through_descriptor = through
        key = "%s %s %s %s %s %s %s" % (
            src_class_name, src_method_name, src_descriptor,
            through_class_name, through_method_name, through_descriptor,
            POSTFIX_REFL_INVOKE)
        n1 = self._get_existed_node(key)
        if n1 == None:
            logger.warning(
                "Something wrong has happened! Could not find invoke Node in Graph with key [%s]"
                % str(key))
            return

        n2 = self._get_node(NODE_METHOD,
                            (dst_class_name, dst_method_name, dst_descriptor))
        n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
        n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
        n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)

        self.G.add_edge(n1.id, n2.id)

        #check if called method calls protected feature
        data = "%s-%s-%s" % (dst_class_name, dst_method_name, dst_descriptor)
        if data in DVM_PERMISSIONS_BY_API_CALLS:
            logger.info(
                "BINGOOOOOOO! The protected method is called through reflection!"
            )
            perm = DVM_PERMISSIONS_BY_API_CALLS[data]
            key1 = "%s %s %s %s %s %s %s %s" % (
                through_class_name, through_method_name, through_descriptor,
                dst_class_name, dst_method_name, dst_descriptor, POSTFIX_PERM,
                perm)
            n3 = self._get_node(NODE_FAKE_PERMISSION, key1, perm, False)
            n3.set_attribute(ATTR_CLASS_NAME, dst_class_name)
            n3.set_attribute(ATTR_METHOD_NAME, dst_method_name)
            n3.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
            n3.set_attribute(ATTR_PERM_NAME, perm)
            n3.set_attribute(ATTR_PERM_LEVEL, MANIFEST_PERMISSIONS[perm][0])
            self.G.add_edge(n2.id, n3.id)

    def addNewInstancePath(self, src, through, dst):
        src_class_name, src_method_name, src_descriptor = src
        dst_class_name, dst_method_name, dst_descriptor = dst
        through_class_name, through_method_name, through_descriptor = through
        key = "%s %s %s %s %s %s %s" % (
            src_class_name, src_method_name, src_descriptor,
            through_class_name, through_method_name, through_descriptor,
            POSTFIX_REFL_NEWINSTANCE)
        n1 = self._get_existed_node(key)
        if n1 == None:
            logger.error(
                "Something wrong has happened! Could not find Node in Graph with key [%s]"
                % str(key))
            return

        n2 = self._get_node(NODE_CONSTRUCTOR,
                            (dst_class_name, dst_method_name, dst_descriptor))
        n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
        n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
        n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)

        self.G.add_edge(n1.id, n2.id)

        #we also need to add link to the class node
        #TODO: Think in the future what to do with this
        n_class = self._get_node(NODE_FAKE_CLASS, dst_class_name, None, False)
        n_class.set_attribute(ATTR_CLASS_NAME, dst_class_name)
        self.G.add_edge(n_class.id, n2.id)

        #checking if we need to add additional permission nodes
        data = "%s-%s-%s" % (dst_class_name, dst_method_name, dst_descriptor)
        if data in DVM_PERMISSIONS_BY_API_CALLS:
            logger.info(
                "BINGOOOOOOO! The protected method is called through reflection!"
            )
            perm = DVM_PERMISSIONS_BY_API_CALLS[data]
            key1 = "%s %s %s %s %s %s %s %s" % (
                through_class_name, through_method_name, through_descriptor,
                dst_class_name, dst_method_name, dst_descriptor, POSTFIX_PERM,
                perm)
            n3 = self._get_node(NODE_FAKE_PERMISSION, key1, perm, False)
            n3.set_attribute(ATTR_CLASS_NAME, dst_class_name)
            n3.set_attribute(ATTR_METHOD_NAME, dst_method_name)
            n3.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
            n3.set_attribute(ATTR_PERM_NAME, perm)
            n3.set_attribute(ATTR_PERM_LEVEL, MANIFEST_PERMISSIONS[perm][0])
            self.G.add_edge(n2.id, n3.id)

    def addDexloadPath(self, src, through, filename):
        src_class_name, src_method_name, src_descriptor = src
        through_class_name, through_method_name, through_descriptor = through
        key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name,
                                        src_descriptor, through_class_name,
                                        through_method_name,
                                        through_descriptor, POSTFIX_DEXLOAD)
        n1 = self._get_existed_node(key)
        if n1 == None:
            logger.error(
                "Something wrong has happened! Could not find Node in Graph with key [%s]"
                % str(key))
            return

        n2 = self._get_node(NODE_FAKE_DEXLOAD_FILE, filename, filename, False)
        n2.set_attribute(ATTR_DEXLOAD_FILENAME, filename)

        self.G.add_edge(n1.id, n2.id)

    def _get_node(self, nType, key, label=None, real=True):
        node_key = None
        if isinstance(key, basestring):
            node_key = key
        elif isinstance(key, tuple):
            node_key = "%s %s %s" % key
        else:
            logger.error("Unknown instance type of key!!!")

        if node_key not in self.nodes.keys():
            new_node = NodeS(len(self.nodes), nType, node_key, label, real)
            self.nodes[node_key] = new_node
            self.nodes_id[new_node.id] = new_node

        return self.nodes[node_key]

    def _get_existed_node(self, key):
        node_key = None
        if isinstance(key, basestring):
            node_key = key
        elif isinstance(key, tuple):
            node_key = "%s %s %s" % key
        else:
            logger.error("Unknown instance type of key!!!")

        try:
            return self.nodes[node_key]
        except KeyError:
            logger.error("Could not find existed node [%s]!" % node_key)
            return None

    def export_to_gexf(self):
        buff = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
        buff += "<gexf xmlns=\"http://www.gephi.org/gexf\" xmlns:viz=\"http://www.gephi.org/gexf/viz\">\n"
        buff += "<graph type=\"static\">\n"

        buff += "<attributes class=\"node\" type=\"static\">\n"
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_TYPE, ID_ATTRIBUTES[ATTR_TYPE])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_CLASS_NAME, ID_ATTRIBUTES[ATTR_CLASS_NAME])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_METHOD_NAME, ID_ATTRIBUTES[ATTR_METHOD_NAME])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_DESCRIPTOR, ID_ATTRIBUTES[ATTR_DESCRIPTOR])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_REAL, ID_ATTRIBUTES[ATTR_REAL])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_PERM_NAME, ID_ATTRIBUTES[ATTR_PERM_NAME])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_PERM_LEVEL, ID_ATTRIBUTES[ATTR_PERM_LEVEL])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (
            ATTR_DEXLOAD_FILENAME, ID_ATTRIBUTES[ATTR_DEXLOAD_FILENAME])
        buff += "</attributes>\n"

        #         buff += "<attributes class=\"node\" type=\"static\">\n"
        #         buff += "<attribute id=\"%d\" title=\"type\" type=\"string\" default=\"normal\"/>\n" % ID_ATTRIBUTES[ "type"]
        #         buff += "<attribute id=\"%d\" title=\"class_name\" type=\"string\"/>\n" % ID_ATTRIBUTES[ "class_name"]
        #         buff += "<attribute id=\"%d\" title=\"method_name\" type=\"string\"/>\n" % ID_ATTRIBUTES[ "method_name"]
        #         buff += "<attribute id=\"%d\" title=\"descriptor\" type=\"string\"/>\n" % ID_ATTRIBUTES[ "descriptor"]
        #
        #
        #         buff += "<attribute id=\"%d\" title=\"permissions\" type=\"integer\" default=\"0\"/>\n" % ID_ATTRIBUTES[ "permissions"]
        #         buff += "<attribute id=\"%d\" title=\"permissions_level\" type=\"string\" default=\"normal\"/>\n" % ID_ATTRIBUTES[ "permissions_level"]
        #
        #         buff += "<attribute id=\"%d\" title=\"dynamic_code\" type=\"boolean\" default=\"false\"/>\n" % ID_ATTRIBUTES[ "dynamic_code"]
        #
        #         buff += "</attributes>\n"

        buff += "<nodes>\n"
        for node in self.G.nodes():
            buff += "<node id=\"%d\" label=\"%s\">\n" % (
                node, escape(self.nodes_id[node].label))
            buff += self.nodes_id[node].get_attributes_gexf()
            buff += "</node>\n"
        buff += "</nodes>\n"

        buff += "<edges>\n"
        nb = 0
        for edge in self.G.edges():
            buff += "<edge id=\"%d\" source=\"%d\" target=\"%d\"/>\n" % (
                nb, edge[0], edge[1])
            nb += 1
        buff += "</edges>\n"

        buff += "</graph>\n"
        buff += "</gexf>\n"

        return buff

    def get_current_real_node_count(self):
        count = 0
        for node in self.nodes_id.keys():
            if self.nodes_id[node].get_attribute(ATTR_REAL) == "True":
                count += 1
        return count

    def get_current_node_count(self):
        return len(self.G.nodes())

    def get_current_edge_count(self):
        return len(self.G.edges())

    def get_current_permission_level_node_count(self, permission_level):
        count = 0
        for node in self.nodes_id.keys():
            if self.nodes_id[node].get_attribute(
                    ATTR_PERM_LEVEL) == permission_level:
                count += 1
        return count

    def get_current_protected_node_count(self):
        count = 0
        for node in self.nodes_id.keys():
            if self.nodes_id[node].get_attribute(ATTR_PERM_LEVEL) != None:
                count += 1
        return count
예제 #24
0
class Buchi(object):
    """
    construct buchi automaton graph
    """
    def __init__(self, task, workspace):
        """
        initialization
        :param task: task specified in LTL
        """
        # task specified in LTL
        self.formula = task.formula
        self.type_num = workspace.type_num
        # graph of buchi automaton
        self.buchi_graph = DiGraph(type='buchi', init=[], accept=[])

    def construct_buchi_graph(self):
        """
        parse the output of the program ltl2ba and build the buchi automaton
        """
        # directory of the program ltl2ba
        dirname = os.path.dirname(__file__)
        # output of the program ltl2ba
        output = subprocess.check_output(dirname + "/./ltl2ba -f \"" +
                                         self.formula + "\"",
                                         shell=True).decode("utf-8")

        # find all states/nodes in the buchi automaton
        state_re = re.compile(r'\n(\w+):\n\t')
        state_group = re.findall(state_re, output)

        # find initial and accepting states
        init = [s for s in state_group if 'init' in s]
        # treat the node accept_init as init node
        accept = [s for s in state_group if 'accept' in s]
        # finish the inilization of the graph of the buchi automaton
        self.buchi_graph.graph['init'] = init
        self.buchi_graph.graph['accept'] = accept

        # for each state/node, find it transition relations
        for state in state_group:
            # add node
            self.buchi_graph.add_node(state, label='', formula='')
            # loop over all transitions starting from current state
            state_if_fi = re.findall(state + r':\n\tif(.*?)fi', output,
                                     re.DOTALL)
            if state_if_fi:
                relation_group = re.findall(r':: (\(.*?\)) -> goto (\w+)\n\t',
                                            state_if_fi[0])
                for symbol, next_state in relation_group:
                    symbol = symbol.replace('||', '|').replace('&&', '&')
                    edge_label = self.merge_check_feasible(symbol)
                    if edge_label:
                        # update node, no edges for selfloop
                        if state == next_state:
                            self.buchi_graph.nodes[state]['label'] = edge_label
                            self.buchi_graph.nodes[state]['formula'] = to_dnf(
                                symbol)
                            # if 'accept' in state:
                            #     print(edge_label)
                            continue
                        # add edge
                        self.buchi_graph.add_edge(state,
                                                  next_state,
                                                  label=edge_label,
                                                  formula=to_dnf(symbol))

            else:
                state_skip = re.findall(state + r':\n\tskip\n', output,
                                        re.DOTALL)
                if state_skip:
                    self.buchi_graph.nodes[state]['label'] = 'skip'
                    self.buchi_graph.nodes[state]['formula'] = 'skip'

        self.delete_node_no_selfloop_except_init_accept()

    def delete_node_no_selfloop_except_init_accept(self):

        remove_node = []
        remove_edge = []
        for node in self.buchi_graph.nodes():
            # if no selfloop
            if self.buchi_graph.nodes[node]['label'] == '':
                # delete if not init or accept
                if 'init' not in node and 'accept' not in node:
                    remove_node.append(node)
                # init or accept in node then only keep the edge with label '1'
                elif 'init' in node:  # or 'accept' in node:
                    for n in self.buchi_graph.succ[node]:
                        if self.buchi_graph.edges[(node, n)]['label'] != '1':
                            remove_edge.append((node, n))
            # if there is self loop but not equal 1, only keep the edge with label '1'
            elif 'init' in node and self.buchi_graph.nodes[node][
                    'label'] != '1':
                for n in self.buchi_graph.succ[node]:
                    if self.buchi_graph.edges[(node, n)]['label'] != '1':
                        remove_edge.append((node, n))

        self.buchi_graph.remove_edges_from(remove_edge)
        self.buchi_graph.remove_nodes_from(remove_node)

    def get_init_accept(self):
        """
        search the shortest path from a node to another, i.e., # of transitions in the path
        :return:
        """
        # shortest path for each accepting state to itself, including self-loop
        accept_accept = dict()
        for accept in self.buchi_graph.graph['accept']:
            # 0 if with self loop or without outgoing edges
            if self.buchi_graph.nodes[accept][
                    'formula'] == 'skip' or self.buchi_graph.nodes[accept][
                        'formula']:
                accept_accept[accept] = 0
                continue
            # find the shortest path back to itself
            length = np.inf
            for suc in self.buchi_graph.succ[accept]:
                try:
                    len1, _ = nx.algorithms.single_source_dijkstra(
                        self.buchi_graph, source=suc, target=accept)
                except nx.exception.NetworkXNoPath:
                    len1 = np.inf
                if len1 < length:
                    length = len1 + 1
            accept_accept[accept] = length

        # shortest path from initial to accept
        init_state = None
        accept_state = None
        length = np.inf
        for init in self.buchi_graph.graph['init']:
            for accept in self.buchi_graph.graph['accept']:
                # if same, find the shorest path to itself
                if init == accept:
                    len1 = np.inf
                    for suc in self.buchi_graph.succ[init]:
                        try:
                            len2, _ = nx.algorithms.single_source_dijkstra(
                                self.buchi_graph, source=suc, target=accept)
                        except nx.exception.NetworkXNoPath:
                            len2 = np.inf
                        if len2 + 1 < len1:
                            len1 = len2 + 1
                # else different, find the shorest path to accept
                else:
                    try:
                        len1, _ = nx.algorithms.single_source_dijkstra(
                            self.buchi_graph, source=init, target=accept)
                    except nx.exception.NetworkXNoPath:
                        continue
                # init_to_accept + accept_to_accept
                len1 = len1 + accept_accept[accept]
                # update
                if len1 < length:
                    init_state = init
                    accept_state = accept
                    length = len1

        # self loop around the accepting state
        self_loop_label = self.buchi_graph.nodes[accept_state]['label']
        return init_state, accept_state, self_loop_label != '1' and self_loop_label != ''

    def merge_check_feasible(self, symbol):
        # [[[literal], .. ], [[literal], .. ], [[literal], .. ]]
        #       clause            clause            clause
        pruned_clause = []
        if symbol == '(1)':
            return '1'
        # non-empty symbol
        else:
            clause = symbol.split(' | ')
            # merge
            for c in clause:
                literals_ = c.strip('(').strip(')').split(' & ')
                literals_.sort()
                literals_.reverse()
                i = 0
                literals = []
                while i < len(literals_):
                    curr = literals_[i].split('_')
                    literals.append(curr)
                    # loop over subsequent elements
                    j = i + 1
                    while j < len(literals_):
                        subsq = literals_[j].split('_')
                        if curr[0] != subsq[0]:
                            break
                        # same # of robots of same type with indicator 0
                        if curr[1] == subsq[1] and curr[2] >= subsq[2] and int(
                                curr[3]) + int(subsq[3]) == 0:
                            del literals_[j]
                            continue
                        j += 1
                    # make it number
                    curr[1] = int(curr[1])
                    curr[2] = int(curr[2])
                    curr[3] = int(curr[3])
                    i += 1

                # if two literal use the same robot, infeasible
                if sum([l[3] for l in literals]) != sum(
                        set([l[3] for l in literals])):
                    continue
                # # check feasibility, whether required robots of same type for one literal exceeds provided robots
                for i in range(len(literals)):
                    if self.type_num[literals[i][1]] < literals[i][2]:
                        raise ValueError(
                            '{0} required robots exceeds provided robots'.
                            format(literals[i]))
                # check feasibility, the required number of robots of same type for all literals exceed provided robots
                for robot_type, num in self.type_num.items():
                    if num < sum(
                        [l[2] for l in literals if l[1] == robot_type]):
                        literals = []
                        break
                if literals:
                    pruned_clause.append(literals)

        return pruned_clause

    def get_subgraph(self, head, tail, is_nonempty_self_loop):
        # node set
        nodes = self.find_all_nodes(head, tail)
        subgraph = self.buchi_graph.subgraph(nodes).copy()
        subgraph.graph['init'] = head
        subgraph.graph['accept'] = tail

        # remove all outgoing edges of the accepting state from subgraph for the prefix part
        if head != tail:
            remove_edge = list(subgraph.edges(tail))
            subgraph.remove_edges_from(remove_edge)

        # prune the subgraph
        self.prune_subgraph(subgraph)

        # get all paths in the pruned subgraph
        paths = []
        if head != tail:
            paths = list(
                nx.all_simple_paths(subgraph, source=head, target=tail))
        else:
            for s in subgraph.succ[head]:
                paths = paths + [[head] + p for p in list(
                    nx.all_simple_paths(subgraph, source=s, target=tail))]
        # if self loop around the accepting state, then create an element with edge label ,
        # solving prefix and suffix together
        if is_nonempty_self_loop and subgraph.nodes[tail]['label'] != 'skip':
            subgraph.add_edge(tail,
                              tail,
                              label=subgraph.nodes[tail]['label'],
                              formula=subgraph.nodes[tail]['formula'])
            for path in paths:
                path.append(tail)
        return subgraph, paths

    def get_element(self, pruned_subgraph):

        edges = list(pruned_subgraph.edges)
        curr_element = 0
        # map each edge to element
        edge2element = dict()
        element2edge = dict()
        while len(edges) > 0:
            # put all elements with same node label and edge label into one list
            curr = edges[0]
            self_loop_label = [curr]
            del edges[0]
            j = 0
            while j < len(edges):
                if pruned_subgraph.nodes[curr[0]]['formula'] == pruned_subgraph.nodes[edges[j][0]]['formula'] \
                        and pruned_subgraph.edges[curr]['formula'] == pruned_subgraph.edges[edges[j]]['formula']:
                    self_loop_label.append(edges[j])
                    del edges[j]
                    continue
                else:
                    j += 1

            # partition into two groups
            dependent = []
            independent = [self_loop_label[0]]
            del self_loop_label[0]
            for edge in self_loop_label:
                # pick the first element
                is_independent = True
                for ind in independent:
                    if nx.has_path(pruned_subgraph, ind[1], edge[0]) or \
                            nx.has_path(pruned_subgraph, edge[1], ind[0]):
                        # if there is a path between the first element and current element
                        is_independent = False
                        break
                # address the first element
                if is_independent:
                    independent.append(edge)
                else:
                    dependent.append(edge)

            # map edge/element to element/edge
            if independent:
                curr_element += 1
                element2edge[curr_element] = independent[0]
                for edge in independent:
                    edge2element[edge] = curr_element

            if dependent:
                for edge in dependent:
                    curr_element += 1
                    edge2element[edge] = curr_element
                    element2edge[curr_element] = edge

        return edge2element, element2edge

    def element2label2eccl(self, element2edge, pruned_subgraph):
        element_component2label = dict()
        # colloect eccl that correponds to the same label
        for element in element2edge.keys():
            # node label
            self_loop_label = pruned_subgraph.nodes[element2edge[element]
                                                    [0]]['label']
            if self_loop_label and self_loop_label != '1':
                element_component2label[(element,
                                         0)] = self.element2label2eccl_helper(
                                             element, 0, self_loop_label)

            # edge label
            edge_label = pruned_subgraph.edges[element2edge[element]]['label']
            if edge_label != '1':
                element_component2label[(element,
                                         1)] = self.element2label2eccl_helper(
                                             element, 1, edge_label)

        return element_component2label

    def element2label2eccl_helper(self, element, component, label):
        label2eccl = dict()
        for c, clause in enumerate(label):
            for l, literal in enumerate(clause):
                region_type = tuple(literal[0:2])
                if region_type in label2eccl.keys():
                    label2eccl[region_type].append((element, component, c, l))
                else:
                    label2eccl[region_type] = [(element, component, c, l)]
        return label2eccl

    def map_path_to_element_sequence(self, edge2element, element2edge,
                                     pruned_subgraph, paths):
        element_sequences = []
        # put all path that share the same set of elements into one group
        for path in paths:
            element_sequence = []
            for i in range(len(path) - 1):
                element_sequence.append(edge2element[(path[i], path[i + 1])])
            is_added = False
            for i in range(len(element_sequences)):
                if set(element_sequences[i][0]) == set(element_sequence):
                    element_sequences[i].append(element_sequence)
                    is_added = True
                    break
            if not is_added:
                element_sequences.append([element_sequence])

        graph_with_maximum_width = DiGraph()
        width = 0
        height = 0
        # for each group, find one poset
        for ele_seq in element_sequences:
            # all pairs of elements from the first element
            linear_order = []
            for i in range(len(ele_seq[0])):
                for j in range(i + 1, len(ele_seq[0])):
                    linear_order.append((ele_seq[0][i], ele_seq[0][j]))
            # remove contradictive pairs
            for i in range(1, len(ele_seq)):
                for j in range(len(ele_seq[1]) - 1):
                    if (ele_seq[i][j + 1], ele_seq[i][j]) in linear_order:
                        linear_order.remove((ele_seq[i][j + 1], ele_seq[i][j]))
            # hasse diagram
            hasse = DiGraph()
            hasse.add_nodes_from(ele_seq[0])
            hasse.add_edges_from(linear_order)
            self.prune_subgraph(hasse)
            try:
                w = max([len(o) for o in nx.antichains(hasse)])
            except nx.exception.NetworkXUnfeasible:
                print(hasse.edges)
            # h = nx.dag_longest_path_length(hasse)
            h = len([
                e for e in hasse.nodes
                if pruned_subgraph.nodes[element2edge[e][0]]['label'] != '1'
            ])
            if w > width or (w == width and h > height):
                graph_with_maximum_width = hasse
                width = w
                height = h
        # print(height)
        return {edge for edge in graph_with_maximum_width.edges}, list(graph_with_maximum_width.nodes), \
                            graph_with_maximum_width

    def prune_subgraph(self, subgraph):
        original_edges = list(subgraph.edges)
        for edge in original_edges:
            attr = subgraph.get_edge_data(edge[0], edge[1])
            subgraph.remove_edge(edge[0], edge[1])
            if nx.has_path(subgraph, edge[0], edge[1]):
                continue
            else:
                subgraph.add_edge(edge[0], edge[1], **attr)

    def element2label2eccl_suffix(self, element2edge, pruned_subgraph):
        stage_element_component2label = dict()
        # colloect eccl that correponds to the same label
        for element in element2edge.keys():
            # node label
            self_loop_label = pruned_subgraph.nodes[element2edge[element]
                                                    [0]]['label']
            if self_loop_label and self_loop_label != '1':
                stage_element_component2label[(
                    1, element, 0)] = self.element2label2eccl_helper_suffix(
                        1, element, 0, self_loop_label)
                stage_element_component2label[(
                    2, element, 0)] = self.element2label2eccl_helper_suffix(
                        2, element, 0, self_loop_label)

            # edge label
            edge_label = pruned_subgraph.edges[element2edge[element]]['label']
            if edge_label != '1':
                stage_element_component2label[(
                    1, element, 1)] = self.element2label2eccl_helper_suffix(
                        1, element, 1, edge_label)
                stage_element_component2label[(
                    2, element, 1)] = self.element2label2eccl_helper_suffix(
                        2, element, 1, edge_label)

        return stage_element_component2label

    def element2label2eccl_helper_suffix(self, stage, element, component,
                                         label):
        label2eccl = dict()
        for c, clause in enumerate(label):
            for l, literal in enumerate(clause):
                region_type = tuple(literal[0:2])
                if region_type in label2eccl.keys():
                    label2eccl[region_type].append(
                        (stage, element, component, c, l))
                else:
                    label2eccl[region_type] = [(stage, element, component, c,
                                                l)]
        return label2eccl

    def find_all_nodes(self, head, tail):
        front = set({head})
        explored = set()
        in_between = set({head})
        while True:
            try:
                node = front.pop()
                explored.add(node)
                for s in self.buchi_graph.succ[node]:
                    if nx.has_path(
                            self.buchi_graph, s,
                            tail) and s not in explored and s not in front:
                        front.add(s)
                        in_between.add(s)
            except KeyError:
                break
        return in_between
예제 #25
0
    def plotly_lookml(G: DiGraph,
                      color_map: list[str],
                      plot_layout: str = "fdp") -> go.Figure:
        """Create an interactive plotly figure for the input `DiGraph` network

        Code source: https://plotly.com/python/network-graphs/

        Args:
            G: the DiGraph() network for LookML nodes
            color_map: color names for each node in `G`
            plot_layout: layout of the nodes positions using Pydot and Graphviz (options: 'dot', 'twopi', 'fdp', 'sfdp', 'circo')

        Returns:
            the interactive plotly figure with the LookML network rendered

        """
        # build layout (i.e. node coordinates / positions)
        pos = graphviz_layout(G, prog=plot_layout)

        edge_x = []
        edge_y = []
        for edge in G.edges():
            x0, y0 = pos[edge[0]]
            x1, y1 = pos[edge[1]]

            edge_x.append(x0)
            edge_x.append(x1)
            edge_x.append(None)
            edge_y.append(y0)
            edge_y.append(y1)
            edge_y.append(None)

        edge_trace = go.Scatter(
            x=edge_x,
            y=edge_y,
            line=dict(width=0.5, color="#888"),
            hoverinfo="none",
            mode="lines",
        )

        node_x = []
        node_y = []
        for node in G.nodes():
            x, y = pos[node]
            node_x.append(x)
            node_y.append(y)

        node_trace = go.Scatter(
            x=node_x,
            y=node_y,
            mode="markers",
            hoverinfo="text",
            marker=dict(
                # colorscale options
                # 'Greys' | 'YlGnBu' | 'Greens' | 'YlOrRd' | 'Bluered' | 'RdBu' |
                # 'Reds' | 'Blues' | 'Picnic' | 'Rainbow' | 'Portland' | 'Jet' |
                # 'Hot' | 'Blackbody' | 'Earth' | 'Electric' | 'Viridis' |
                colorscale="YlGnBu",
                color=[],
                size=10,
                line_width=2,
            ),
        )
        # Color node point
        node_text = []
        for node, adjacencies in G.adjacency():
            node_text.append(node)

        node_trace.marker.color = color_map
        node_trace.text = node_text

        def layout():
            layout = go.Layout(
                title="LookML Content Relationships Network",
                titlefont_size=16,
                showlegend=False,
                hovermode="closest",
                margin=dict(b=20, l=5, r=5, t=40),
                xaxis=dict(showgrid=False,
                           zeroline=False,
                           showticklabels=False),
                yaxis=dict(showgrid=False,
                           zeroline=False,
                           showticklabels=False),
            )
            return layout

        # Create Network Graph
        fig = go.Figure(data=[edge_trace, node_trace], layout=layout())
        fig.show()
        return fig
예제 #26
0
def load(fname):
    def clean_bool(string):
        if string == "0":
            return None
        else:
            return string

    def to_bool(string):
        if string == "1" or string == "True":
            return True
        elif string == "0" or string == "False":
            return False
        else:
            return string

    def to_float(string):
        if string == "None":
            return None
        try:
            return float(string)
        except:
            return string

    mode = "node0"
    nodes = []
    edges = []
    pointers = set()
    outputs = None
    inputs = None
    named_ranges = {}
    infile = gzip.GzipFile(fname, 'r')

    for line in infile.read().splitlines():

        if line == "====":
            mode = "node0"
            continue
        if line == "-----":
            cellmap_temp = {n.address(): n for n in nodes}
            Range = RangeFactory(cellmap_temp)
            mode = "node0"
            continue
        elif line == "edges":
            cellmap = {n.address(): n for n in nodes}
            mode = "edges"
            continue
        elif line == "outputs":
            mode = "outputs"
            continue
        elif line == "inputs":
            mode = "inputs"
            continue
        elif line == "named_ranges":
            mode = "named_ranges"
            continue

        if mode == "node0":
            [
                address, formula, python_expression, is_range, is_named_range,
                is_pointer, should_eval
            ] = line.split(SEP)
            formula = clean_bool(formula)
            python_expression = clean_bool(python_expression)
            is_range = to_bool(is_range)
            is_named_range = to_bool(is_named_range)
            is_pointer = to_bool(is_pointer)
            should_eval = should_eval
            mode = "node1"
        elif mode == "node1":
            if is_range:

                reference = json.loads(
                    line
                ) if is_pointer else line  # in order to be able to parse dicts
                vv = Range(reference)

                if is_pointer:
                    if not is_named_range:
                        address = vv.name

                    pointers.add(address)

                cell = Cell(address, None, vv, formula, is_range,
                            is_named_range, should_eval)
                cell.python_expression = python_expression
                nodes.append(cell)
            else:
                value = to_bool(to_float(line))

                cell = Cell(address, None, value, formula, is_range,
                            is_named_range, should_eval)

                cell.python_expression = python_expression
                if formula:
                    if 'OFFSET' in formula or 'INDEX' in formula:
                        pointers.add(address)

                    cell.compile()
                nodes.append(cell)
        elif mode == "edges":
            source, target = line.split(SEP)
            edges.append((cellmap[source], cellmap[target]))
        elif mode == "outputs":
            outputs = line.split(SEP)
        elif mode == "inputs":
            inputs = line.split(SEP)
        elif mode == "named_ranges":
            k, v = line.split(SEP)
            named_ranges[k] = v

    G = DiGraph(data=edges)

    print "Graph loading done, %s nodes, %s edges, %s cellmap entries" % (len(
        G.nodes()), len(G.edges()), len(cellmap))

    return (G, cellmap, named_ranges, pointers, outputs, inputs)
예제 #27
0
class StadynaMcgAnalysis:
    def __init__(self):
        self.androGuardObjects = []
        
        self.nodes = {}
        self.nodes_id = {}
        self.entry_nodes = []
        self.G = DiGraph()
        
#         self.internal_methods = []
        #self.GI = DiGraph()
        
        
    def analyseFile(self, vmx, apk):
        vm = vmx.get_vm()
        self.androGuardObjects.append((apk, vm, vmx))

#         self.internal_methods.extend(vm.get_methods())
        
        #creating real internal nodes
        internal_called_methods = vmx.get_tainted_packages().stadyna_get_internal_called_methods()
        for method in internal_called_methods:
            class_name, method_name, descriptor = method
            
            nodeType = None
            if method_name == "<clinit>":
                nodeType = NODE_STATIC_INIT
            elif method_name == "<init>":
                nodeType = NODE_CONSTRUCTOR
            else:
                nodeType = NODE_METHOD
            n = self._get_node(nodeType, (class_name, method_name, descriptor))
            n.set_attribute(ATTR_CLASS_NAME, class_name)
            n.set_attribute(ATTR_METHOD_NAME, method_name)
            n.set_attribute(ATTR_DESCRIPTOR, descriptor)
            self.G.add_node(n.id)
            
        
        
        
        #creating real edges (nodes are already there)
        #currently we are working only with internal packages.
        for j in vmx.get_tainted_packages().get_internal_packages():
            src_class_name, src_method_name, src_descriptor = j.get_src(vm.get_class_manager())
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst(vm.get_class_manager())
             
            n1 = self._get_existed_node((src_class_name, src_method_name, src_descriptor))
#             n1.set_attribute(ATTR_CLASS_NAME, src_class_name)
#             n1.set_attribute(ATTR_METHOD_NAME, src_method_name)
#             n1.set_attribute(ATTR_DESCRIPTOR, src_descriptor)
             
            n2 = self._get_existed_node((dst_class_name, dst_method_name, dst_descriptor))
#             n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
#             n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
#             n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
            self.G.add_edge(n1.id, n2.id)
        
        
        
        #adding fake class nodes    
        for method in internal_called_methods:
            src_class_name, src_method_name, src_descriptor = method
            if src_method_name == "<init>" or src_method_name == "<clinit>":
                n1 = self._get_existed_node((src_class_name, src_method_name, src_descriptor))
                n2 = self._get_node(NODE_FAKE_CLASS, src_class_name, None, False)
                n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
                if src_method_name == "<clinit>":
                    self.G.add_edge(n1.id, n2.id)
                elif src_method_name == "<init>":
                    self.G.add_edge(n2.id, n1.id)
                
        
        #real (external) reflection invoke nodes    
        reflection_invoke_paths = analysis.seccon_get_invoke_method_paths(vmx)
        for j in reflection_invoke_paths:
            src_class_name, src_method_name, src_descriptor = j.get_src( vm.get_class_manager() )
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst( vm.get_class_manager() )
            
            n1 = self._get_existed_node((src_class_name, src_method_name, src_descriptor))
            if n1 == None:
                logger.warning("Cannot find the node [%s], where reflection invoke is called!" % (src_class_name, src_method_name, src_descriptor))
                continue
            
            key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name, src_descriptor, dst_class_name, dst_method_name, dst_descriptor, POSTFIX_REFL_INVOKE)
            n2 = self._get_node(NODE_REFL_INVOKE, key, LABEL_REFL_INVOKE, True)
            n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
            n2.set_attribute(ATTR_METHOD_NAME, src_method_name)
            n2.set_attribute(ATTR_DESCRIPTOR, src_descriptor)
            
            self.G.add_edge( n1.id, n2.id )
            
        
        #real (external) reflection new instance nodes   
        reflection_newInstance_paths = analysis.seccon_get_newInstance_method_paths(vmx)
        for j in reflection_newInstance_paths:
            src_class_name, src_method_name, src_descriptor = j.get_src( vm.get_class_manager() )
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst( vm.get_class_manager() )
            
            n1 = self._get_existed_node((src_class_name, src_method_name, src_descriptor))
            if n1 == None:
                logger.warning("Cannot find the node [%s], where reflection new instance is called!" % (src_class_name, src_method_name, src_descriptor))
                continue
            
            key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name, src_descriptor, dst_class_name, dst_method_name, dst_descriptor, POSTFIX_REFL_NEWINSTANCE)
            n2 = self._get_node(NODE_REFL_NEWINSTANCE, key, LABEL_REFL_NEWINSTANCE, True)
            n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
            n2.set_attribute(ATTR_METHOD_NAME, src_method_name)
            n2.set_attribute(ATTR_DESCRIPTOR, src_descriptor)
            
            self.G.add_edge( n1.id, n2.id )
        
        
        #adding fake entry points
        if apk != None:
            for i in apk.get_activities() :
                j = bytecode.FormatClassToJava(i)
                n1 = self._get_existed_node((j, "onCreate", "(Landroid/os/Bundle;)V"))
                if n1 != None: 
                    key = "%s %s %s %s" % (j, "onCreate", "(Landroid/os/Bundle;)V", POSTFIX_ACTIVITY)
                    n2 = self._get_node(NODE_FAKE_ACTIVITY, key, LABEL_ACTIVITY, False)
                    self.G.add_edge( n2.id, n1.id )
                    self.entry_nodes.append( n1.id )
                    
            for i in apk.get_services() :
                j = bytecode.FormatClassToJava(i)
                n1 = self._get_existed_node( (j, "onCreate", "()V") )
                if n1 != None : 
                    key = "%s %s %s %s" % (j, "onCreate", "()V", POSTFIX_SERVICE)
                    n2 = self._get_node(NODE_FAKE_SERVICE, key, LABEL_SERVICE, False)
                    self.G.add_edge( n2.id, n1.id )
                    self.entry_nodes.append( n1.id )
            
            for i in apk.get_receivers() :
                j = bytecode.FormatClassToJava(i)
                n1 = self._get_existed_node( (j, "onReceive", "(Landroid/content/Context;Landroid/content/Intent;)V") )
                if n1 != None : 
                    key = "%s %s %s %s" % (j, "onReceive", "(Landroid/content/Context;Landroid/content/Intent;)V", POSTFIX_RECEIVER)
                    n2 = self._get_node(NODE_FAKE_SERVICE, key, LABEL_RECEIVER, False)
                    self.G.add_edge( n2.id, n1.id )
                    self.entry_nodes.append( n1.id )

        
        #fake permissions
        list_permissions = vmx.stadyna_get_permissions([])
        for x in list_permissions:
            for j in list_permissions[x]:
                if isinstance(j, PathVar):
                    continue

                src_class_name, src_method_name, src_descriptor = j.get_src( vm.get_class_manager() )
                dst_class_name, dst_method_name, dst_descriptor = j.get_dst( vm.get_class_manager() )
                
                n1 = self._get_existed_node((src_class_name, src_method_name, src_descriptor))
                if n1 == None:
                    logger.warning("Cannot find node [%s %s %s] for permission [%s]!" % (src_class_name, src_method_name, src_descriptor, x))
                    continue
                
                #SOURCE, DEST, POSTFIX, PERMISSION_NAME
                key = "%s %s %s %s %s %s %s %s" %  (src_class_name, src_method_name, src_descriptor, dst_class_name, dst_method_name, dst_descriptor, POSTFIX_PERM, x)
                n2 = self._get_node(NODE_FAKE_PERMISSION, key, x, False)
                n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
                n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
                n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
                n2.set_attribute(ATTR_PERM_NAME, x)
                n2.set_attribute(ATTR_PERM_LEVEL, MANIFEST_PERMISSIONS[ x ][0])
                
                self.G.add_edge(n1.id, n2.id)
                                

        #fake DexClassLoader nodes
        dyn_code_loading = analysis.seccon_get_dyncode_loading_paths(vmx)
        for j in dyn_code_loading:
            src_class_name, src_method_name, src_descriptor = j.get_src( vm.get_class_manager() )
            dst_class_name, dst_method_name, dst_descriptor = j.get_dst( vm.get_class_manager() )
            
            n1 = self._get_existed_node((src_class_name, src_method_name, src_descriptor))
            if n1 == None:
                logger.warning("Cannot find dexload node [%s]!" % (src_class_name, src_method_name, src_descriptor))
                continue
            
            key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name, src_descriptor, dst_class_name, dst_method_name, dst_descriptor, POSTFIX_DEXLOAD)
            n2 = self._get_node(NODE_FAKE_DEXLOAD, key, LABEL_DEXLOAD, False)
            n2.set_attribute(ATTR_CLASS_NAME, src_class_name)
            n2.set_attribute(ATTR_METHOD_NAME, src_method_name)
            n2.set_attribute(ATTR_DESCRIPTOR, src_descriptor)
            
            self.G.add_edge( n1.id, n2.id )
        
        
        
        # Specific Java/Android library
        for c in vm.get_classes():
            #if c.get_superclassname() == "Landroid/app/Service;" :
            #    n1 = self._get_node( c.get_name(), "<init>", "()V" )
            #    n2 = self._get_node( c.get_name(), "onCreate", "()V" )

            #    self.G.add_edge( n1.id, n2.id )
            if c.get_superclassname() == "Ljava/lang/Thread;" or c.get_superclassname() == "Ljava/util/TimerTask;" :
                for i in vm.get_method("run") :
                    if i.get_class_name() == c.get_name() :
                        n1 = self._get_node(NODE_METHOD, (i.get_class_name(), i.get_name(), i.get_descriptor()))
                        n2 = self._get_node(NODE_METHOD, (i.get_class_name(), "start", i.get_descriptor())) 
                       
                        # link from start to run
                        self.G.add_edge( n2.id, n1.id )
                        #n2.add_edge( n1, {} )

                        # link from init to start
                        for init in vm.get_method("<init>") :
                            if init.get_class_name() == c.get_name():
                                #TODO: Leaving _get_existed_node to check if all the nodes are included
                                #It is possible that internal_packages does not contain this node. Leaving _get_existed_node to check this
                                n3 = self._get_node(NODE_CONSTRUCTOR, (init.get_class_name(), "<init>", init.get_descriptor()))
                                self.G.add_edge( n3.id, n2.id )
                                #n3.add_edge( n2, {} )
        
                        
                        
    def addInvokePath(self, src, through, dst):
        src_class_name, src_method_name, src_descriptor = src
        dst_class_name, dst_method_name, dst_descriptor = dst
        through_class_name, through_method_name, through_descriptor = through
        key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name, src_descriptor, through_class_name, through_method_name, through_descriptor, POSTFIX_REFL_INVOKE)
        n1 = self._get_existed_node(key)
        if n1 == None:
            logger.warning("Something wrong has happened! Could not find invoke Node in Graph with key [%s]" % str(key))
            return
        
        n2 = self._get_node(NODE_METHOD, (dst_class_name, dst_method_name, dst_descriptor))
        n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
        n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
        n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
        
        self.G.add_edge(n1.id, n2.id)
        
        #check if called method calls protected feature
        data = "%s-%s-%s" % (dst_class_name, dst_method_name, dst_descriptor)
        if data in DVM_PERMISSIONS_BY_API_CALLS:
            logger.info("BINGOOOOOOO! The protected method is called through reflection!")
            perm = DVM_PERMISSIONS_BY_API_CALLS[ data ]
            key1 = "%s %s %s %s %s %s %s %s" %  (through_class_name, through_method_name, through_descriptor, dst_class_name, dst_method_name, dst_descriptor, POSTFIX_PERM, perm)
            n3 = self._get_node(NODE_FAKE_PERMISSION, key1, perm, False)
            n3.set_attribute(ATTR_CLASS_NAME, dst_class_name)
            n3.set_attribute(ATTR_METHOD_NAME, dst_method_name)
            n3.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
            n3.set_attribute(ATTR_PERM_NAME, perm)
            n3.set_attribute(ATTR_PERM_LEVEL, MANIFEST_PERMISSIONS[ perm ][0])
            self.G.add_edge(n2.id, n3.id)
            

        
            
    def addNewInstancePath(self, src, through, dst):
        src_class_name, src_method_name, src_descriptor = src
        dst_class_name, dst_method_name, dst_descriptor = dst
        through_class_name, through_method_name, through_descriptor = through
        key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name, src_descriptor, through_class_name, through_method_name, through_descriptor, POSTFIX_REFL_NEWINSTANCE)
        n1 = self._get_existed_node(key)
        if n1 == None:
            logger.error("Something wrong has happened! Could not find Node in Graph with key [%s]" % str(key))
            return
        
        n2 = self._get_node(NODE_CONSTRUCTOR, (dst_class_name, dst_method_name, dst_descriptor))
        n2.set_attribute(ATTR_CLASS_NAME, dst_class_name)
        n2.set_attribute(ATTR_METHOD_NAME, dst_method_name)
        n2.set_attribute(ATTR_DESCRIPTOR, dst_descriptor) 
        
        self.G.add_edge(n1.id, n2.id)
        
        #we also need to add link to the class node
        #TODO: Think in the future what to do with this
        n_class = self._get_node(NODE_FAKE_CLASS, dst_class_name, None, False)
        n_class.set_attribute(ATTR_CLASS_NAME, dst_class_name)
        self.G.add_edge(n_class.id, n2.id)
        
        #checking if we need to add additional permission nodes
        data = "%s-%s-%s" % (dst_class_name, dst_method_name, dst_descriptor)
        if data in DVM_PERMISSIONS_BY_API_CALLS:
            logger.info("BINGOOOOOOO! The protected method is called through reflection!")
            perm = DVM_PERMISSIONS_BY_API_CALLS[ data ]
            key1 = "%s %s %s %s %s %s %s %s" %  (through_class_name, through_method_name, through_descriptor, dst_class_name, dst_method_name, dst_descriptor, POSTFIX_PERM, perm)
            n3 = self._get_node(NODE_FAKE_PERMISSION, key1, perm, False)
            n3.set_attribute(ATTR_CLASS_NAME, dst_class_name)
            n3.set_attribute(ATTR_METHOD_NAME, dst_method_name)
            n3.set_attribute(ATTR_DESCRIPTOR, dst_descriptor)
            n3.set_attribute(ATTR_PERM_NAME, perm)
            n3.set_attribute(ATTR_PERM_LEVEL, MANIFEST_PERMISSIONS[ perm ][0])
            self.G.add_edge(n2.id, n3.id)
        
            
    def addDexloadPath(self, src, through, filename):
        src_class_name, src_method_name, src_descriptor = src
        through_class_name, through_method_name, through_descriptor = through
        key = "%s %s %s %s %s %s %s" % (src_class_name, src_method_name, src_descriptor,  through_class_name, through_method_name, through_descriptor, POSTFIX_DEXLOAD)
        n1 = self._get_existed_node(key)
        if n1 == None:
            logger.error("Something wrong has happened! Could not find Node in Graph with key [%s]" % str(key))
            return
        
        n2 = self._get_node(NODE_FAKE_DEXLOAD_FILE, filename, filename, False)
        n2.set_attribute(ATTR_DEXLOAD_FILENAME, filename)
        
        self.G.add_edge(n1.id, n2.id)
        
    

    def _get_node(self, nType, key, label=None, real=True):
        node_key = None
        if isinstance(key, basestring):
            node_key = key
        elif isinstance(key, tuple):
            node_key = "%s %s %s" % key
        else:
            logger.error("Unknown instance type of key!!!")
        
        if node_key not in self.nodes.keys():
            new_node = NodeS(len(self.nodes), nType, node_key, label, real)
            self.nodes[node_key] = new_node
            self.nodes_id[new_node.id] = new_node
        
        return self.nodes[node_key]
    
    
    def _get_existed_node(self, key):
        node_key = None
        if isinstance(key, basestring):
            node_key = key
        elif isinstance(key, tuple):
            node_key = "%s %s %s" % key
        else:
            logger.error("Unknown instance type of key!!!")
        
        try:
            return self.nodes[node_key]
        except KeyError:
            logger.error("Could not find existed node [%s]!" % node_key)
            return None

    def export_to_gexf(self) :
        buff = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
        buff += "<gexf xmlns=\"http://www.gephi.org/gexf\" xmlns:viz=\"http://www.gephi.org/gexf/viz\">\n"
        buff += "<graph type=\"static\">\n"

        buff += "<attributes class=\"node\" type=\"static\">\n"
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_TYPE,              ID_ATTRIBUTES[ ATTR_TYPE ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_CLASS_NAME,        ID_ATTRIBUTES[ ATTR_CLASS_NAME ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_METHOD_NAME,       ID_ATTRIBUTES[ ATTR_METHOD_NAME ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_DESCRIPTOR,        ID_ATTRIBUTES[ ATTR_DESCRIPTOR ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_REAL,              ID_ATTRIBUTES[ ATTR_REAL ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_PERM_NAME,         ID_ATTRIBUTES[ ATTR_PERM_NAME ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_PERM_LEVEL,        ID_ATTRIBUTES[ ATTR_PERM_LEVEL ])
        buff += "<attribute title=\"%s\" id=\"%d\" type=\"string\"/>\n" % (ATTR_DEXLOAD_FILENAME,  ID_ATTRIBUTES[ ATTR_DEXLOAD_FILENAME ])
        buff += "</attributes>\n"

#         buff += "<attributes class=\"node\" type=\"static\">\n" 
#         buff += "<attribute id=\"%d\" title=\"type\" type=\"string\" default=\"normal\"/>\n" % ID_ATTRIBUTES[ "type"]
#         buff += "<attribute id=\"%d\" title=\"class_name\" type=\"string\"/>\n" % ID_ATTRIBUTES[ "class_name"]
#         buff += "<attribute id=\"%d\" title=\"method_name\" type=\"string\"/>\n" % ID_ATTRIBUTES[ "method_name"]
#         buff += "<attribute id=\"%d\" title=\"descriptor\" type=\"string\"/>\n" % ID_ATTRIBUTES[ "descriptor"]
# 
# 
#         buff += "<attribute id=\"%d\" title=\"permissions\" type=\"integer\" default=\"0\"/>\n" % ID_ATTRIBUTES[ "permissions"]
#         buff += "<attribute id=\"%d\" title=\"permissions_level\" type=\"string\" default=\"normal\"/>\n" % ID_ATTRIBUTES[ "permissions_level"]
#         
#         buff += "<attribute id=\"%d\" title=\"dynamic_code\" type=\"boolean\" default=\"false\"/>\n" % ID_ATTRIBUTES[ "dynamic_code"]
#         
#         buff += "</attributes>\n"   

        buff += "<nodes>\n"
        for node in self.G.nodes() :
            buff += "<node id=\"%d\" label=\"%s\">\n" % (node, escape(self.nodes_id[ node ].label))
            buff += self.nodes_id[ node ].get_attributes_gexf()
            buff += "</node>\n"
        buff += "</nodes>\n"


        buff += "<edges>\n"
        nb = 0
        for edge in self.G.edges() :
            buff += "<edge id=\"%d\" source=\"%d\" target=\"%d\"/>\n" % (nb, edge[0], edge[1])
            nb += 1
        buff += "</edges>\n"


        buff += "</graph>\n"
        buff += "</gexf>\n"

        return buff
  
    
    def get_current_real_node_count(self):
        count = 0
        for node in self.nodes_id.keys():
            if self.nodes_id[node].get_attribute(ATTR_REAL) == "True":
                count += 1
        return count

    def get_current_node_count(self):
        return len(self.G.nodes())
    
    def get_current_edge_count(self):
        return len(self.G.edges())
    
    def get_current_permission_level_node_count(self, permission_level):
        count = 0
        for node in self.nodes_id.keys():
            if self.nodes_id[node].get_attribute(ATTR_PERM_LEVEL) == permission_level:
                count += 1
        return count
    
    def get_current_protected_node_count(self):
        count = 0
        for node in self.nodes_id.keys():
            if self.nodes_id[node].get_attribute(ATTR_PERM_LEVEL) != None:
                count += 1
        return count
예제 #28
0
class Buchi(object):
    """
    construct buchi automaton graph
    """
    def __init__(self, task):
        """
        initialization
        :param task: task specified in LTL
        """
        # task specified in LTL
        self.formula = task.formula
        self.subformula = task.subformula
        self.number_of_robots = task.number_of_robots
        # graph of buchi automaton
        self.buchi_graph = DiGraph(type='buchi', init=[], accept=[])

        # minimal length (in terms of number of transitions) between a pair of nodes
        self.min_length = dict()

    def construct_buchi_graph(self):
        """
        parse the output of the program ltl2ba and build the buchi automaton
        """
        # directory of the program ltl2ba
        dirname = os.path.dirname(__file__)
        # output of the program ltl2ba
        output = subprocess.check_output(dirname + "/ltl2ba -f \"" +
                                         self.formula + "\"",
                                         shell=True).decode("utf-8")

        # find all states/nodes in the buchi automaton
        state_re = re.compile(r'\n(\w+):\n\t')
        state_group = re.findall(state_re, output)

        # find initial and accepting states
        init = [s for s in state_group if 'init' in s]
        print('init', init)
        accept = [s for s in state_group if 'accept' in s]
        # finish the inilization of the graph of the buchi automaton
        self.buchi_graph.graph['init'] = init
        self.buchi_graph.graph['accept'] = accept

        order_key = list(self.subformula.keys())
        order_key.sort(reverse=True)
        # for each state/node, find it transition relations
        for state in state_group:
            # add node
            self.buchi_graph.add_node(state)
            # loop over all transitions starting from current state
            state_if_fi = re.findall(state + r':\n\tif(.*?)fi', output,
                                     re.DOTALL)
            if state_if_fi:
                relation_group = re.findall(r':: (\(.*?\)) -> goto (\w+)\n\t',
                                            state_if_fi[0])
                for symbol, next_state in relation_group:
                    # delete edges with multiple subformulas
                    if ' && ' in symbol: continue
                    # whether the edge is feasible in terms of atomic propositions
                    for k in order_key:
                        symbol = symbol.replace('e{0}'.format(k),
                                                self.subformula[k])
                    # get the trurh assignment
                    truth_table = self.get_truth_assignment(symbol)
                    # infeasible transition
                    if not truth_table: continue
                    # add edge
                    self.buchi_graph.add_edge(state,
                                              next_state,
                                              truth=truth_table)
            else:
                state_skip = re.findall(state + r':\n\tskip\n', output,
                                        re.DOTALL)
                if state_skip:
                    self.buchi_graph.add_edge(state, state, truth='1')

    def get_truth_assignment(self, symbol):
        """
        get one set of truth assignment that makes the symbol true
        :param symbol: logical expression which controls the transition
        :return: a set of truth assignment enables the symbol
        """
        # empty symbol
        if symbol == '(1)':
            return '1'
        # non-empty symbol
        else:
            exp = symbol.replace('||', '|').replace('&&',
                                                    '&').replace('!', '~')
            # add extra constraints: a single robot can reside in at most one region
            robot_region = self.robot2region(exp)
            for robot, region in robot_region.items():
                mutual_execlusion = list(combinations(region, 2))
                # single label in the symbol
                if not mutual_execlusion: continue
                for i in range(len(mutual_execlusion)):
                    mutual_execlusion[i] = '(~(' + ' & '.join(
                        list(mutual_execlusion[i])) + '))'
                exp = exp + '&' + ' & '.join(mutual_execlusion)
            # find one truth assignment that makes symbol true using function satisfiable
            truth = satisfiable(sympify(exp), algorithm="dpll")
            try:
                truth_table = dict()
                for key, value in truth.items():
                    truth_table[key.name] = value
            except AttributeError:
                return False
            else:
                return truth_table

    def get_minimal_length(self):
        """
        search the shortest path from a node to another, i.e., # of transitions in the path
        :return: 
        """
        # loop over pairs of buchi states
        for head_node in self.buchi_graph.nodes():
            for tail_node in self.buchi_graph.nodes():
                # head_node = tail_node, and tail_node is an accepting state
                if head_node != tail_node and 'accept' in tail_node:
                    try:
                        length, _ = nx.algorithms.single_source_dijkstra(
                            self.buchi_graph,
                            source=head_node,
                            target=tail_node)
                    # couldn't find a path from head_node to tail_node
                    except nx.exception.NetworkXNoPath:
                        length = np.inf
                    self.min_length[(head_node, tail_node)] = length
                # head_node != tail_node and tail_node is an accepting state
                # move 1 step forward to all reachable states of head_node then calculate the minimal length
                elif head_node == tail_node and 'accept' in tail_node:
                    length = np.inf
                    for suc in self.buchi_graph.succ[head_node]:
                        try:
                            len1, _ = nx.algorithms.single_source_dijkstra(
                                self.buchi_graph, source=suc, target=tail_node)
                        except nx.exception.NetworkXNoPath:
                            len1 = np.inf
                        if len1 < length:
                            length = len1 + 1
                    self.min_length[(head_node, tail_node)] = length

    def get_feasible_accepting_state(self):
        """
        get feasbile accepting/final state, or check whether an accepting state is feaasible
        :return:
        """
        accept = self.buchi_graph.graph['accept']
        self.buchi_graph.graph['accept'] = []
        for ac in accept:
            for init in self.buchi_graph.graph['init']:
                if self.min_length[(init, ac)] < np.inf and self.min_length[
                    (ac, ac)] < np.inf:
                    self.buchi_graph.graph['accept'].append(ac)
                    break

    def robot2region(self, symbol):
        """
        pair of robot and corresponding regions in the expression
        :param symbol: logical expression
        :return: robot index : regions
        eg: input:  exp = 'l1_1 & l3_1 & l4_1 & l4_6 | l3_4 & l5_6'
            output: {1: ['l1_1', 'l3_1', 'l4_1'], 4: ['l3_4'], 6: ['l4_6', 'l5_6']}
        """

        robot_region = dict()
        for r in range(self.number_of_robots):
            findall = re.findall(r'(l\d+?_{0})[^0-9]'.format(r + 1), symbol)
            if findall:
                robot_region[str(r + 1)] = findall

        return robot_region
예제 #29
0
class buchi_graph(object):
    """ construct buchi automaton graph
    Parameter:
        formula: LTL formula specifying task
    """

    def __init__(self, formula, formula_comp, exclusion):
        self.formula = formula
        self.formula_comp = formula_comp
        self.exclusion = exclusion

    def formulaParser(self):
        """replace letter with symbol
        """
        indicator = 'FG'

        if [True for i in indicator if i in self.formula]:
            self.formula.replace('F', '<>').replace('G', '[]')

    def execLtl2ba(self):
        """ given formula, exectute the ltl2ba
        Parameter:
            buchi_str: output string of program ltl2ba  (utf-8 format)
        """

        dirname = os.path.dirname(__file__)
        self.buchi_str = subprocess.check_output(dirname + "/./ltl2ba -f \"" + self.formula + "\"", shell=True).decode("utf-8")

    def buchiGraph(self):
        """parse the output of ltl2ba
        Parameter:
            buchi_graph: Graph of buchi automaton
        """
        # find all states
        state_re = re.compile(r'\n(\w+):\n\t')
        state_group = re.findall(state_re, self.buchi_str)

        # find initial and accepting states
        init = [s for s in state_group if 'init' in s]
        accep = [s for s in state_group if 'accept' in s]

        """
        Format:
            buchi_graph.node = NodeView(('T0_init', 'T1_S1', 'accept_S1'))
            buchi_graph.edges = OutEdgeView([('T0_init', 'T0_init'), ('T0_init', 'T1_S1'),....])
            buchi_graph.succ = AdjacencyView({'T0_init': {'T0_init': {'label': '1'}, 'T1_S1': {'label': 'r3'}}})
        """
        self.buchi_graph = DiGraph(type='buchi', init=init, accept=accep)
        order_key = list(self.formula_comp.keys())
        order_key.sort(reverse=True)
        for state in state_group:
            # for each state, find transition relation
            # add node
            self.buchi_graph.add_node(state)
            state_if_fi = re.findall(state + r':\n\tif(.*?)fi', self.buchi_str, re.DOTALL)
            if state_if_fi:
                relation_group = re.findall(r':: (\(.*?\)) -> goto (\w+)\n\t', state_if_fi[0])
                for (labell, state_dest) in relation_group:
                    # whether the edge is feasible in terms of unit atomic proposition
                    label = self.InitialDelInfesEdge(labell)
                    if not label or label.isspace():
                        continue
                    # add edge
                    for k in order_key:
                        if k >= 10:
                            label = label.replace('e_{0}'.format(k), self.formula_comp[k])
                        else:
                            label = label.replace('e{0}'.format(k), self.formula_comp[k])
                    # if '!' in label:
                    #     label = self.PutNotInside(label)
                    self.buchi_graph.add_edge(state, state_dest, label=label)

        return self.buchi_graph

    def ShorestPathBtRg(self, regions):
        """
        calculate shoresr path between any two labeled regions
        :param regions: regions
        :return: dict (region, region) : length
        """
        polys = [[vg.Point(0.4, 1.0), vg.Point(0.4, 0.7), vg.Point(0.6, 0.7), vg.Point(0.6, 1.0)],
                 [vg.Point(0.3, 0.2), vg.Point(0.3, 0.0), vg.Point(0.7, 0.0), vg.Point(0.7, 0.2)]]
        g = vg.VisGraph()
        g.build(polys, status=False)

        min_len_region = dict()
        for key1, value1 in regions.items():
            for key2, value2 in regions.items():
                init = value1[:2]
                tg = value2[:2]
                # shorest path between init and tg point
                shortest = g.shortest_path(vg.Point(init[0], init[1]), vg.Point(tg[0], tg[1]))
                # (key2, key1) is already checked
                if (key2, key1) in min_len_region.keys():
                    min_len_region[(key1, key2)] = min_len_region[(key2, key1)]
                else:
                    # different regions
                    if key1 != key2:
                        dis = 0
                        for i in range(len(shortest)-1):
                            dis = dis + np.linalg.norm(np.subtract((shortest[i].x, shortest[i].y), (shortest[i+1].x, shortest[i+1].y)))

                        min_len_region[(key1, key2)] = dis
                    # same region
                    else:
                        min_len_region[(key1, key2)] = 0

        return min_len_region

    def RobotRegion(self, exp, robot):
        """
        pair of robot and corresponding regions in the expression
        :param exp: logical expression
        :param robot: # of robots
        :return: dic of robot index : regions
        exp = 'l1_1 & l3_1 & l4_1 & l4_6 | l3_4 & l5_6'
        {1: ['l1_1', 'l3_1', 'l4_1'], 4: ['l3_4'], 6: ['l4_6', 'l5_6']}
        """

        robot_region_dict = dict()
        for r in range(robot):
            findall = re.findall(r'(l\d+?_{0})[^0-9]'.format(r + 1), exp)
            if findall:
                robot_region_dict[str(r + 1)] = findall

        return robot_region_dict

    def FeasTruthTable(self, exp, robot_region):
        """
        Find feasible truth table to make exp true
        :param exp: expression
        :return:
        """
        if exp == '(1)':
            return '1'

        sgl_value = []
        for key, value in robot_region.items():
            if len(value) == 1:
                sgl_value.append(value[0])

        # set all to be false
        exp1 = to_cnf(exp)
        value_in_exp = [value.name for value in exp1.atoms()]
        subs = {true_rb_rg: False for true_rb_rg in value_in_exp}
        if exp1.subs(subs):
            return subs

        # set one to be true, the other to be false
        for prod in itertools.product(*robot_region.values()):
            exp1 = exp
            # set one specific item to be true
            for true_rb_rg in prod:
                # set the other to be false
                value_cp = list(robot_region[true_rb_rg.split('_')[1]])
                if len(value_cp) > 1:
                    value_cp.remove(true_rb_rg)
                    # replace the rest with same robot to be ~
                    for v_remove in value_cp:
                        exp1 = exp1.replace(v_remove, '~' + true_rb_rg)

            # simplify
            exp1 = to_cnf(exp1)
            # all value in expression
            value_in_exp = [value.name for value in exp1.atoms()]
            # all single value in expression
            sgl_value_in_exp = [value for value in value_in_exp if value in sgl_value]
            # not signle value in expression
            not_sgl_value_in_exp = [value for value in value_in_exp if value not in sgl_value]

            subs1 = {true_rb_rg: True for true_rb_rg in not_sgl_value_in_exp}

            tf = [False, True]
            # if type(exp1) == Or:
            #     tf = [False, True]

            if len(sgl_value_in_exp):
                for p in itertools.product(*[tf] * len(sgl_value_in_exp)):
                    subs2 = {sgl_value_in_exp[i]: p[i] for i in range(len(sgl_value_in_exp))}
                    subs = {**subs1, **subs2}
                    if exp1.subs(subs):
                        return subs
            else:
                if exp1.subs(subs1):
                    return subs1

        return []

    def DelInfesEdge(self, robot):
        """
        Delete infeasible edge
        :param buchi_graph: buchi automaton
        :param robot: # robot
        """
        TobeDel = []
        # print(self.buchi_graph.number_of_edges())
        i = 0
        for edge in self.buchi_graph.edges():
            i = i+1
            # print(i)
            b_label = self.buchi_graph.edges[edge]['label']
            # multiple labels
            if ') && (' in b_label:
                TobeDel.append(edge)
                continue
            if b_label != '(1)':
                exp = b_label.replace('||', '|').replace('&&', '&').replace('!', '~')
                truth = satisfiable(exp, algorithm="dpll")
                truth_table = dict()
                for key, value in truth.items():
                    truth_table[key.name] = value
                if not truth_table:
                    TobeDel.append(edge)
                else:
                    self.buchi_graph.edges[edge]['truth'] = truth_table
            else:
                self.buchi_graph.edges[edge]['truth'] = '1'

        for edge in TobeDel:
            self.buchi_graph.remove_edge(edge[0], edge[1])
        # print(self.buchi_graph.number_of_edges())

    def InitialDelInfesEdge(self, orig_label):
        div_by_or = orig_label.split(') || (')

        for item in div_by_or:
            feas = True
            for excl in self.exclusion:
                # mutual exclusion term exist
                if excl[0] in item and excl[1] in item and '!{0}'.format(excl[0]) not in item and '!{0}'.format(excl[1]) not in item:
                    feas = False
                    break
            if not feas:
                item = item.strip('(').strip(')')
                item = '(' + item + ')'
                orig_label = orig_label.replace(' '+item+' ||', '').replace(item+' || ','').replace(' || '+item,'').replace(item,'')

        return orig_label

    def MinLen(self):
        """
        search the shorest path from a node to another, weight = 1, i.e. # of state in the path
        :param buchi_graph:
        :return: dict of pairs of node : length of path
        """
        min_qb_dict = dict()
        for node1 in self.buchi_graph.nodes():
            for node2 in self.buchi_graph.nodes():
                if node1 != node2 and 'accept' in node2:
                    try:
                        l, _ = nx.algorithms.single_source_dijkstra(self.buchi_graph, source=node1, target=node2)
                    except nx.exception.NetworkXNoPath:
                        l = np.inf
                    min_qb_dict[(node1, node2)] = l
                elif node1 == node2 and 'accept' in node2:
                    l = np.inf
                    for succ in self.buchi_graph.succ[node1]:
                        try:
                            l0, _ = nx.algorithms.single_source_dijkstra(self.buchi_graph, source=succ, target=node1)
                        except nx.exception.NetworkXNoPath:
                            l0 = np.inf
                        if l0 < l:
                            l = l0 + 1
                    min_qb_dict[(node1, node2)] = l


        return min_qb_dict

    # def MinLen_Cost(self):
    #     """
    #     search the shorest path from a node to another, weight = cost
    #     :param buchi_graph:
    #     :return: dict of pairs of node : length of path
    #     """
    #     min_qb_dict = dict()
    #     for node1 in self.buchi_graph.nodes():
    #         for node2 in self.buchi_graph.nodes():
    #             c = np.inf
    #             if node1 != node2:
    #                 try:
    #                     path = nx.all_simple_paths(self.buchi_graph, source=node1, target=node2)
    #                     for i in range(len(path)-2):
    #                         word_init = self.buchi_graph.edges[(path[i], path[i+1])]['label']
    #                         word_tg = self.buchi_graph.edges[(path[i+1], path[i+2])]['label']
    #                         # calculate distance travelled from word_init to word_tg
    #                         t_s_b = True
    #                         # split label with ||
    #                         label_init = word_init.split('||')
    #                         label_tg = word_tg.split('||')
    #                         for label in b_label:
    #                             t_s_b = True
    #                             # spit label with &&
    #                             atomic_label = label.split('&&')
    #                             for a in atomic_label:
    #                                 a = a.strip()
    #                                 a = a.strip('(')
    #                                 a = a.strip(')')
    #                                 if a == '1':
    #                                     continue
    #                                 # whether ! in an atomic proposition
    #                                 if '!' in a:
    #                                     if a[1:] in x_label:
    #                                         t_s_b = False
    #                                         break
    #                                 else:
    #                                     if not a in x_label:
    #                                         t_s_b = False
    #                                         break
    #                             # either one of || holds
    #                             if t_s_b:
    #                                 return t_s_b
    #                 except nx.exception.NetworkXNoPath:
    #                     c = np.inf
    #             else:
    #                 c = 0
    #             min_qb_dict[(node1, node2)] = c
    #
    #     return min_qb_dict

    def FeasAcpt(self, min_qb):
        """
        delte infeasible final state
        :param buchi_graph: buchi automaton
        :param min_qb: dict of pairs of node : length of path
        """
        accept = self.buchi_graph.graph['accept']
        for acpt in accept:
            if min_qb[(self.buchi_graph.graph['init'][0], acpt)] == np.inf or min_qb[(acpt, acpt)] == np.inf:
                self.buchi_graph.graph['accept'].remove(acpt)

    def PutNotInside(self, str):
        """
        put not inside the parenthesis !(p1 && p2) -> !p1 or !p2
        :param str: old
        :return: new
        """
        substr = re.findall("(!\(.*?\))", str)  # ['!(p1 && p2)', '!(p4 && p5)']
        for s in substr:
            oldstr = s.strip().strip('!').strip('(').strip(')')
            nstr = ''
            for ss in oldstr.split():
                if '&&' in ss:
                    nstr = nstr + ' or '
                elif 'or' in ss:
                    nstr = nstr + ' && '
                else:
                    nstr = nstr + '!' + ss
            str = str.replace(s, nstr)
        return str

    def label2sat(self):
        for edge in self.buchi_graph.edges():
            label = self.buchi_graph.edges[edge]['label']
            label = label.replace('||', '|').replace('&&', '&').replace('!', '~')
            exp1 = to_cnf(label)
            self.buchi_graph.edges[edge]['label'] = exp1
예제 #30
0
class BoardGraph(object):
    def __init__(self, board_class=Board):
        self.graph = self.start = self.last = self.closest = None
        self.min_domino_count = None
        self.board_class = board_class

    def walk(self, board, size_limit=maxsize):
        pending_nodes = []
        self.graph = DiGraph()
        self.start = board.display(cropped=True)
        self.graph.add_node(self.start)
        pending_nodes.append(self.start)
        self.last = self.start
        while pending_nodes:
            if len(self.graph) >= size_limit:
                raise GraphLimitExceeded(size_limit)
            state = pending_nodes.pop()
            board = self.board_class.create(state, border=1)
            for move, new_state in self.generate_moves(board):
                if not self.graph.has_node(new_state):
                    # new node
                    self.graph.add_node(new_state)
                    pending_nodes.append(new_state)
                self.graph.add_edge(state, new_state, move=move)
        return set(self.graph.nodes())

    def generate_moves(self, board):
        """ Generate all moves from the board's current state.

        :param Board board: the current state
        :return: a generator of (state, move_description) tuples
        """
        dominoes = set(board.dominoes)
        domino_count = len(dominoes)
        if self.min_domino_count is None or domino_count < self.min_domino_count:
            self.min_domino_count = domino_count
            self.last = board.display(cropped=True)
        for domino in dominoes:
            dx, dy = domino.direction
            yield from self.try_move(domino, dx, dy)
            yield from self.try_move(domino, -dx, -dy)

    def try_move(self, domino, dx, dy):
        try:
            new_state = self.move(domino, dx, dy)
            move = domino.describe_move(dx, dy)
            yield move, new_state
        except BadPositionError:
            pass

    def move(self, domino, dx, dy):
        """ Move a domino and calculate the new board state.

        Afterward, put the board back in its original state.
        @return: the new board state
        @raise BadPositionError: if the move is illegal
        """
        domino.move(dx, dy)
        try:
            board = domino.head.board
            if not board.isConnected():
                raise BadPositionError('Board is not connected.')
            if board.hasLoner():
                raise BadPositionError('Board has a lonely domino.')
            return board.display(cropped=True)
        finally:
            domino.move(-dx, -dy)

    def get_solution(self, return_partial=False):
        """ Find a solution from the graph of moves.

        @param return_partial: If True, a partial solution will be returned if no
        solution exists.
        @return: a list of strings describing each move. Each string is two
        digits describing the domino that moved plus a letter to show the
        direction.
        """
        solution = []
        goal = self.closest if return_partial else self.last or ''
        solution_nodes = shortest_path(self.graph, self.start, goal)
        for i in range(len(solution_nodes) - 1):
            source, target = solution_nodes[i:i + 2]
            solution.append(self.graph[source][target]['move'])
        return solution

    def get_choice_counts(self):
        solution_nodes = shortest_path(self.graph, self.start, self.last)
        return [len(self.graph[node]) for node in solution_nodes[:-1]]

    def get_average_choices(self):
        choices = self.get_choice_counts()
        return sum(choices) / float(len(choices)) if choices else maxsize

    def get_max_choices(self):
        choices = self.get_choice_counts()
        return max(choices) if choices else maxsize
예제 #31
0
def load(fname):

    def clean_bool(string):
        if string == "0":
            return None
        else:
            return string

    def to_bool(string):
        if string == "1" or string == "True":
            return True
        elif string == "0" or string == "False":
            return False
        else:
            return string
    def to_float(string):
        if string == "None":
            return None
        try:
            return float(string)
        except:
            return string

    mode = "node0"
    nodes = []
    edges = []
    volatiles = set()
    outputs = None
    inputs = None
    named_ranges = {}
    infile = gzip.GzipFile(fname, 'r')

    for line in infile.read().splitlines():

        if line == "====":
            mode = "node0"
            continue
        if line == "-----":
            cellmap_temp = {n.address(): n for n in nodes}
            Range = RangeFactory(cellmap_temp)
            mode = "node0"
            continue
        elif line == "edges":
            cellmap = {n.address(): n for n in nodes}
            mode = "edges"
            continue
        elif line == "outputs":
            mode = "outputs"
            continue
        elif line == "inputs":
            mode = "inputs"
            continue
        elif line == "named_ranges":
            mode = "named_ranges"
            continue

        if mode == "node0":
            [address, formula, python_expression, is_range, is_named_range, is_volatile, should_eval] = line.split(SEP)
            formula = clean_bool(formula)
            python_expression = clean_bool(python_expression)
            is_range = to_bool(is_range)
            is_named_range = to_bool(is_named_range)
            is_volatile = to_bool(is_volatile)
            should_eval = should_eval
            mode = "node1"
        elif mode == "node1":
            if is_range:

                reference = json.loads(line) if is_volatile else line # in order to be able to parse dicts
                vv = Range(reference)

                if is_volatile:
                    if not is_named_range:
                        address = vv.name

                    volatiles.add(address)

                cell = Cell(address, None, vv, formula, is_range, is_named_range, should_eval)
                cell.python_expression = python_expression
                nodes.append(cell)
            else:
                value = to_bool(to_float(line))
                
                cell = Cell(address, None, value, formula, is_range, is_named_range, should_eval)
                
                cell.python_expression = python_expression
                if formula:
                    if 'OFFSET' in formula or 'INDEX' in formula:
                        volatiles.add(address)


                    cell.compile()               
                nodes.append(cell)
        elif mode == "edges":
            source, target = line.split(SEP)
            edges.append((cellmap[source], cellmap[target]))
        elif mode == "outputs":
            outputs = line.split(SEP)
        elif mode == "inputs":
            inputs = line.split(SEP)
        elif mode == "named_ranges":
            k,v = line.split(SEP)
            named_ranges[k] = v

    G = DiGraph(data = edges)

    print "Graph loading done, %s nodes, %s edges, %s cellmap entries" % (len(G.nodes()),len(G.edges()),len(cellmap))

    return (G, cellmap, named_ranges, volatiles, outputs, inputs)