def test_full_join_graph(): # Simple Graphs G = nx.Graph() G.add_node(0) G.add_edge(1, 2) H = nx.Graph() H.add_edge(3, 4) U = nx.full_join(G, H) assert_equal(set(U), set(G) | set(H)) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H)) # Rename U = nx.full_join(G, H, rename=('g', 'h')) assert_equal(set(U), set(['g0', 'g1', 'g2', 'h3', 'h4'])) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H)) # Rename graphs with string-like nodes G = nx.Graph() G.add_node("a") G.add_edge("b", "c") H = nx.Graph() H.add_edge("d", "e") U = nx.full_join(G, H, rename=('g', 'h')) assert_equal(set(U), set(['ga', 'gb', 'gc', 'hd', 'he'])) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H)) # DiGraphs G = nx.DiGraph() G.add_node(0) G.add_edge(1, 2) H = nx.DiGraph() H.add_edge(3, 4) U = nx.full_join(G, H) assert_equal(set(U), set(G) | set(H)) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2) # DiGraphs Rename U = nx.full_join(G, H, rename=('g', 'h')) assert_equal(set(U), set(['g0', 'g1', 'g2', 'h3', 'h4'])) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2)
def test_full_join_graph(): # Simple Graphs G = nx.Graph() G.add_node(0) G.add_edge(1, 2) H = nx.Graph() H.add_edge(3, 4) U = nx.full_join(G, H) assert set(U) == set(G) | set(H) assert len(U) == len(G) + len(H) assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) # Rename U = nx.full_join(G, H, rename=("g", "h")) assert set(U) == {"g0", "g1", "g2", "h3", "h4"} assert len(U) == len(G) + len(H) assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) # Rename graphs with string-like nodes G = nx.Graph() G.add_node("a") G.add_edge("b", "c") H = nx.Graph() H.add_edge("d", "e") U = nx.full_join(G, H, rename=("g", "h")) assert set(U) == {"ga", "gb", "gc", "hd", "he"} assert len(U) == len(G) + len(H) assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) # DiGraphs G = nx.DiGraph() G.add_node(0) G.add_edge(1, 2) H = nx.DiGraph() H.add_edge(3, 4) U = nx.full_join(G, H) assert set(U) == set(G) | set(H) assert len(U) == len(G) + len(H) assert len( U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2 # DiGraphs Rename U = nx.full_join(G, H, rename=("g", "h")) assert set(U) == {"g0", "g1", "g2", "h3", "h4"} assert len(U) == len(G) + len(H) assert len( U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
def test_full_join_multigraph(): # MultiGraphs G = nx.MultiGraph() G.add_node(0) G.add_edge(1, 2) H = nx.MultiGraph() H.add_edge(3, 4) U = nx.full_join(G, H) assert_equal(set(U), set(G) | set(H)) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H)) # MultiGraphs rename U = nx.full_join(G, H, rename=('g', 'h')) assert_equal(set(U), set(['g0', 'g1', 'g2', 'h3', 'h4'])) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H)) # MultiDiGraphs G = nx.MultiDiGraph() G.add_node(0) G.add_edge(1, 2) H = nx.MultiDiGraph() H.add_edge(3, 4) U = nx.full_join(G, H) assert_equal(set(U), set(G) | set(H)) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2) # MultiDiGraphs rename U = nx.full_join(G, H, rename=('g', 'h')) assert_equal(set(U), set(['g0', 'g1', 'g2', 'h3', 'h4'])) assert_equal(len(U), len(G) + len(H)) assert_equal(len(U.edges()), len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2)
def test_full_join_multigraph(): # MultiGraphs G = nx.MultiGraph() G.add_node(0) G.add_edge(1, 2) H = nx.MultiGraph() H.add_edge(3, 4) U = nx.full_join(G, H) assert set(U) == set(G) | set(H) assert len(U) == len(G) + len(H) assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) # MultiGraphs rename U = nx.full_join(G, H, rename=("g", "h")) assert set(U) == {"g0", "g1", "g2", "h3", "h4"} assert len(U) == len(G) + len(H) assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) # MultiDiGraphs G = nx.MultiDiGraph() G.add_node(0) G.add_edge(1, 2) H = nx.MultiDiGraph() H.add_edge(3, 4) U = nx.full_join(G, H) assert set(U) == set(G) | set(H) assert len(U) == len(G) + len(H) assert len( U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2 # MultiDiGraphs rename U = nx.full_join(G, H, rename=("g", "h")) assert set(U) == {"g0", "g1", "g2", "h3", "h4"} assert len(U) == len(G) + len(H) assert len( U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
def random_cograph(n, seed=None): r"""Returns a random cograph with $2 ^ n$ nodes. A cograph is a graph containing no path on four vertices. Cographs or $P_4$-free graphs can be obtained from a single vertex by disjoint union and complementation operations. This generator starts off from a single vertex and performes disjoint union and full join operations on itself. The decision on which operation will take place is random. Parameters ---------- n : int The order of the cograph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G : A random graph containing no path on four vertices. See Also -------- full_join union References ---------- .. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham, "Complement reducible graphs", Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174, ISSN 0166-218X. """ R = nx.empty_graph(1) for i in range(n): RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R)) if seed.randint(0, 1) == 0: R = nx.full_join(R, RR) else: R = nx.disjoint_union(R, RR) return R