예제 #1
0
def alp_katz(g, subgraphs, func=max):
    import operator
    landmarks = []
    for sub in subgraphs.values():
        if g.is_directed():
            g_s = list(nx.strongly_connected_component_subgraphs(g.subgraph(sub)))[0]
        else:
            g_s = list(nx.connected_component_subgraphs(g.subgraph(sub), False))[0]

        n_len = nx.number_of_nodes(g_s)

        if n_len < 10:
            landmarks.append(g_s.nodes()[0])
        else:
            try:
                bc = nx.katz_centrality(g_s, max_iter=100000, normalized=True)
            except:
                try:
                    print "Running Katz centrality again for tolerance = ", str(.001)
                    bc = nx.katz_centrality(g_s, max_iter=100000, normalized=True, tol=.001)
                except:
                    print "Katz Centrality returned nothing."
                    return []


            if func == mode:
                landmarks.append(mode(bc))
            else:
                landmarks.append(func(bc.iteritems(), key=operator.itemgetter(1))[0])

    return landmarks
예제 #2
0
파일: metrics.py 프로젝트: carolmb/survey
def katz(graph_data):
    graph = graph_data['net']
    w_label = graph_data['w_label']

    # sem peso e sem direção
    graph_simply = dir2undir(graph, w_label).simplify(
        multiple=True, loops=False, combine_edges=graph_data['simply_method2'])

    # sem peso e sem direção
    undir_unweig = sorted(networkx.katz_centrality(graph_simply, weight=None))
    undir_unweig = list(undir_unweig.values())

    # com peso
    weig = sorted(networkx.katz_centrality(graph_simply, weight=w_label))
    weig = list(weig.values())

    # com direção
    in_katz = sorted(networkx.katz_centrality(graph.to_networkx(),
                                              weight=None))
    in_katz = list(in_katz.values())

    # com peso e com direção
    in_weig_katz = sorted(
        networkx.katz_centrality(graph.to_networkx(), weight=w_label))
    in_weig_katz = list(in_weig_katz.values())

    return undir_unweig, weig, in_katz, in_weig_katz
예제 #3
0
    def compute_katz(self, graph_id):
        """
        Computes the Katz coeffcient for every node in the indicated graph.
        Ads the computed coefficient as property to nodes.
        """

        if graph_id == 1:
            rank = nx.katz_centrality(self.graph_icnet)
            nx.set_node_attributes(self.graph_icnet, 'katz', rank)
        if graph_id == 2:
            rank = nx.katz_centrality(self.graph_aicnet)
            nx.set_node_attributes(self.graph_aicnet, 'katz', rank)
예제 #4
0
 def test_K5(self):
     """Katz centrality: K5"""
     G = nx.complete_graph(5)
     alpha = 0.1
     b = nx.katz_centrality(G, alpha)
     v = math.sqrt(1 / 5.0)
     b_answer = dict.fromkeys(G, v)
     for n in sorted(G):
         assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
     nstart = {n: 1 for n in G}
     b = nx.katz_centrality(G, alpha, nstart=nstart)
     for n in sorted(G):
         assert b[n] == pytest.approx(b_answer[n], abs=1e-7)
예제 #5
0
 def test_K5(self):
     """Katz centrality: K5"""
     G = nx.complete_graph(5)
     alpha = 0.1
     b = nx.katz_centrality(G, alpha)
     v = math.sqrt(1 / 5.0)
     b_answer = dict.fromkeys(G, v)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n])
     nstart = dict([(n, 1) for n in G])
     b = nx.katz_centrality(G, alpha, nstart=nstart)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n])
 def test_K5(self):
     """Katz centrality: K5"""
     G = nx.complete_graph(5)
     alpha = 0.1
     b = nx.katz_centrality(G, alpha)
     v = math.sqrt(1 / 5.0)
     b_answer = dict.fromkeys(G, v)
     for n in sorted(G):
         assert almost_equal(b[n], b_answer[n])
     nstart = {n: 1 for n in G}
     b = nx.katz_centrality(G, alpha, nstart=nstart)
     for n in sorted(G):
         assert almost_equal(b[n], b_answer[n])
def centrality_algorithms(graph):

    # Centrality functions return a dictionary of values
    # Calculate the maximum and print node name with value
    # Value stays the same for closness centrality, but the node itself changes
    centrality_dict = nx.degree_centrality(graph)
    print('Degree Centrality: ', max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
    centrality_dict = nx.in_degree_centrality(graph)
    print('In Degree Centrality: ',
          max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
    centrality_dict = nx.out_degree_centrality(graph)
    print('Out Degree Centrality: ',
          max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
    centrality_dict = nx.eigenvector_centrality_numpy(graph)
    print('Eigenvector Centrality: ',
          max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
    centrality_dict = nx.katz_centrality(graph)
    print('Katz Centrality: ', max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
    centrality_dict = nx.closeness_centrality(graph)
    print('Closeness Centrality: ',
          max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
    centrality_dict = nx.betweenness_centrality(graph)
    print('Betweenness Centrality: ',
          max(centrality_dict, key=centrality_dict.get),
          max(centrality_dict.values()))
예제 #8
0
def centrality_calculation_by_networkx(G):
    '''
    使用 networkx 计算 Centrality
    '''

    d_c = nx.degree_centrality(G)

    k_z = nx.katz_centrality(
        G=G,
        alpha=0.3,
        beta=0.3,
        max_iter=1000,
        tol=1.0e-6,
        nstart=None,
        normalized=True)

    # 归一化,每个元素除以集合中最大元素
    max_item = max([d_c[item] for item in d_c])
    degree_centrality = [round(d_c[item] / max_item, 4) for item in d_c]

    max_item = max([k_z[item] for item in k_z])
    katz_centrality = [round(k_z[item] / max_item, 4) for item in k_z]

    nx_list = [{'Degree': degree_centrality}, {'Katz': katz_centrality}]

    return nx_list
예제 #9
0
def test_katz_centrality_nx(graph_file):
    gc.collect()

    NM = utils.read_csv_for_nx(graph_file)
    Gnx = nx.from_pandas_edgelist(NM,
                                  create_using=nx.DiGraph(),
                                  source="0",
                                  target="1")

    G = cugraph.utilities.convert_from_nx(Gnx)
    largest_out_degree = G.degrees().nlargest(n=1, columns="out_degree")
    largest_out_degree = largest_out_degree["out_degree"].iloc[0]
    katz_alpha = 1 / (largest_out_degree + 1)

    nk = nx.katz_centrality(Gnx, alpha=katz_alpha)
    ck = cugraph.katz_centrality(Gnx, alpha=None, max_iter=1000)

    # Calculating mismatch
    nk = sorted(nk.items(), key=lambda x: x[0])
    ck = sorted(ck.items(), key=lambda x: x[0])
    err = 0
    assert len(ck) == len(nk)
    for i in range(len(ck)):
        if (abs(ck[i][1] - nk[i][1]) > 0.1 and ck[i][0] == nk[i][0]):
            err = err + 1
    print("Mismatches:", err)
    assert err < (0.1 * len(ck))
예제 #10
0
def centrality_histogram(g, c):  # Creates the centrality histogram specified
    if c == 'degree':
        degree_sequence = sorted(
            [val for key, val in nx.degree_centrality(g).items()])
    elif c == 'in_degree':
        degree_sequence = sorted(
            [val for key, val in nx.in_degree_centrality(g).items()])
    elif c == 'out_degree':
        degree_sequence = sorted(
            [val for key, val in nx.out_degree_centrality(g).items()])
    elif c == 'closeness':
        degree_sequence = sorted(
            [val for key, val in nx.closeness_centrality(g).items()])
    elif c == 'betweenness':
        degree_sequence = sorted(
            [val for key, val in nx.betweenness_centrality(g).items()])
    elif c == 'eigenvector':
        degree_sequence = sorted(
            [val for key, val in nx.eigenvector_centrality(g).items()])
    elif c == 'katz':
        degree_sequence = sorted(
            [val for key, val in nx.katz_centrality(g).items()])
    degree_count = col.Counter(degree_sequence)
    deg, cnt = zip(*degree_count.items())
    plt.bar(deg, cnt, width=0.01, color='b')
    plt.title('Degree Histogram')
    plt.ylabel('Count')
    plt.xlabel('Degree')
    plt.show()
예제 #11
0
def relevant_stats(G):
	cloC = nx.closeness_centrality(G, distance = 'distance')
	betC = nx.betweenness_centrality(G, weight = 'distance')
	katC = nx.katz_centrality(G)
	eigC = nx.eigenvector_centrality(G)

	return
예제 #12
0
 def most_central(self,F=1,cent_type='betweenness'):
     if cent_type == 'betweenness':
         ranking = nx.betweenness_centrality(self.G).items()
     elif cent_type == 'closeness':
         ranking = nx.closeness_centrality(self.G).items()
     elif cent_type == 'eigenvector':
         ranking = nx.eigenvector_centrality(self.G).items()
     elif cent_type == 'harmonic':
         ranking = nx.harmonic_centrality(self.G).items()
     elif cent_type == 'katz':
         ranking = nx.katz_centrality(self.G).items()
     elif cent_type == 'load':
         ranking = nx.load_centrality(self.G).items()
     elif cent_type == 'degree':
         ranking = nx.degree_centrality(self.G).items()
     ranks = [r for n,r in ranking]
     cent_dict = dict([(self.lab[n],r) for n,r in ranking])
     m_centrality = sum(ranks)
     if len(ranks) > 0:
         m_centrality = m_centrality/len(ranks)
     #Create a graph with the nodes above the cutoff centrality- remove the low centrality nodes
     thresh = F*m_centrality
     lab = {}
     for k in self.lab:
         lab[k] = self.lab[k]
     g = Graph(self.adj.copy(),self.char_list)
     for n,r in ranking:
         if r < thresh:
             g.G.remove_node(n)
             del g.lab[n]
     return (cent_dict,thresh,g)
예제 #13
0
파일: player.py 프로젝트: remzr7/Pawa
    def nextBestNode(self, state): #Finds the next best spot for a station
        graph = state.get_graph()
        nodeScores = []
        centrality = nx.katz_centrality(graph)
        for i in centrality:
            nodeScores.append(centrality[i])

        bestNode = 0
        bestScore = nodeScores[0]
        for i in range(len(nodeScores)):
            if (nodeScores[i] > bestScore and (i not in self.stations)):
                bestNode = i
                bestScore = nodeScores[i]
        #print("bestNode=",(bestScore,bestNode))

        #Factor in distance from each station
        for i in range(len(nodeScores)):
            if (i not in self.stations):
                distanceScore = 1.0 / self.closestStation(graph, i)[1]
                #print("distanceScore=",distanceScore)
                nodeScores[i] -= distanceScore * self.distanceWeight

        #Get the node with the best score
        bestNode = 0
        bestScore = nodeScores[0]
        for i in range(len(nodeScores)):
            if (nodeScores[i] > bestScore and (i not in self.stations)):
                bestNode = i
                bestScore = nodeScores[i]
        #print("bestNode=",(bestScore,bestNode))
        return bestNode
예제 #14
0
 def centralities(self):
     '''
     Get info on centralities of data
     Params:
         None
     Returns:
         dictionary of centrality metrics with keys(centralities supported):
             degree - degree centrality
             betweeness - betweeness centrality
             eigenvector - eigenvector centrality
             hub - hub scores - not implemented
             authority - authority scores - not implemented
             katz - katz centrality with params X Y
             pagerank - pagerank centrality with params X Y
     '''
     output = {}
     output['degree'] = nx.degree_centrality(self.G)
     output['betweeness'] = nx.betweenness_centrality(self.G)
     try:
         output['eigenvector'] = nx.eigenvector_centrality(self.G)
         output['katz'] = nx.katz_centrality(self.G)
     except:
         output['eigenvector'] = 'empty or exception'
         output['katz'] = 'empty or exception'
     # output['hub'] = 'Not implemented'
     # output['authority'] = 'Not implemented'
     # output['pagerank'] = 'Not implemented'
     return output
예제 #15
0
 def centrality(self, c_type='degree'):
     """计算整个网络的所有节点的中心度,返回一个dict"""
     if c_type not in self._centrality.keys():  # 检测输入类型不正确的异常
         raise ValueError(
             "输入类型不正确!type请输入degree/indegree/outdegree/eigenvector/katz/pagerank/betweenness/closeness!")
     if not self._centrality[c_type]:
         if c_type == 'degree':  # 因为networkx的度数中心度计算不带权重,故自制了一个
             if self.weight_type:
                 weight = [edge[2][self.weight_type] for edge in self.network.edges(data=True)]
                 s = 1.0 / sum(weight)
             else:
                 s = 1.0 / (len(self.network) - 1.0)
             self._centrality[c_type] = {n: d * s for n, d in self.network.degree(weight=self.weight_type)}
         elif c_type == 'indegree':
             s = 1.0 / (len(self.network) - 1.0)
             self._centrality[c_type] = {n: d * s for n, d in self.network.in_degree(weight=self.weight_type)}
         elif c_type == 'outdegree':
             s = 1.0 / (len(self.network) - 1.0)
             self._centrality[c_type] = {n: d * s for n, d in self.network.out_degree(weight=self.weight_type)}
         elif c_type == 'eigenvector':
             self._centrality[c_type] = nx.eigenvector_centrality(self.network, max_iter=1000,
                                                                  weight=self.weight_type)
         elif c_type == 'katz':
             self._centrality[c_type] = nx.katz_centrality(self.network, max_iter=1000, weight=self.weight_type)
         elif c_type == 'pagerank':
             pr = nx.pagerank(self.network, weight=self.weight_type)
             self._centrality[c_type] = {node: pr[node] for node in pr}
         elif c_type == 'betweenness':
             self._centrality[c_type] = nx.betweenness_centrality(self.network, weight=self.weight_type)
         elif c_type == 'closeness':
             self._centrality[c_type] = nx.closeness_centrality(self.network)
     return self._centrality[c_type]
예제 #16
0
def get_hubs(c, method):
    try:
        if method == 'eigenvector':
            centralities = nx.eigenvector_centrality(c, weight='weight', max_iter=1000)
        elif method == 'pagerank':
            centralities = nx.pagerank(c, max_iter=1000)
        elif method == 'hits_hub':
            centralities = nx.hits(c, max_iter=1000)[1]
        elif method == 'hits_authority':
            centralities = nx.hits(c, max_iter=1000)[0]
        elif method == 'betweenness':
            centralities = nx.betweenness_centrality(c, weight='weight')
        elif method == 'katz':
            centralities = nx.katz_centrality(c, weight='weight', max_iter=10000)
        else:
            raise NameError
    except nx.PowerIterationFailedConvergence:
        return None

    max_hub = max(centralities.items(), key=itemgetter(1))[1]
    hubs = [node for node in centralities if abs(centralities[node]-max_hub)<=0.001]
    if len(hubs) == len(c.nodes()):
        return 'all nodes'
    else:
        return (', '.join(hubs))
예제 #17
0
 def most_central(self, F=1, cent_type='betweenness'):
     if cent_type == 'betweenness':
         ranking = nx.betweenness_centrality(self.G).items()
     elif cent_type == 'closeness':
         ranking = nx.closeness_centrality(self.G).items()
     elif cent_type == 'eigenvector':
         ranking = nx.eigenvector_centrality(self.G).items()
     elif cent_type == 'harmonic':
         ranking = nx.harmonic_centrality(self.G).items()
     elif cent_type == 'katz':
         ranking = nx.katz_centrality(self.G).items()
     elif cent_type == 'load':
         ranking = nx.load_centrality(self.G).items()
     elif cent_type == 'degree':
         ranking = nx.degree_centrality(self.G).items()
     ranks = [r for n, r in ranking]
     cent_dict = dict([(self.lab[n], r) for n, r in ranking])
     m_centrality = sum(ranks)
     if len(ranks) > 0:
         m_centrality = m_centrality / len(ranks)
     #Create a graph with the nodes above the cutoff centrality- remove the low centrality nodes
     thresh = F * m_centrality
     lab = {}
     for k in self.lab:
         lab[k] = self.lab[k]
     g = Graph(self.adj.copy(), self.char_list)
     for n, r in ranking:
         if r < thresh:
             g.G.remove_node(n)
             del g.lab[n]
     return (cent_dict, thresh, g)
예제 #18
0
 def print_graph_stats(self, G):
     print('average clustering: ', nx.average_clustering(G))
     degrees = [val for (node, val) in G.degree()]
     print('average degree: ', sum(degrees) / float(len(G)))
     print('density: ', nx.density(G))
     print('assortativity coefficient (Pearson\'s rho): ',
           nx.degree_pearson_correlation_coefficient(G))
     print('(should be negative according to Gonzalez et al., 2007)')
     import operator
     x = nx.betweenness_centrality(G)
     sorted_x = sorted(x.items(), key=operator.itemgetter(1))
     print('betweenness centrality', sorted_x)
     x = nx.degree_centrality(G)
     sorted_x = sorted(x.items(), key=operator.itemgetter(1))
     print('degree centrality:', sorted_x)
     x = nx.eigenvector_centrality(G)
     sorted_x = sorted(x.items(), key=operator.itemgetter(1))
     print('eigenvector centrality:', sorted_x)
     x = nx.katz_centrality(G)
     sorted_x = sorted(x.items(), key=operator.itemgetter(1))
     print('Katz centrality:', sorted_x)
     x = nx.closeness_centrality(G)
     sorted_x = sorted(x.items(), key=operator.itemgetter(1))
     print('closeness centrality:', sorted_x)
     print('\n')
예제 #19
0
def create_metric_column(G, metric, year=None):
    """
    Returns an array of the pageranks for vertices in a network G

    Parameters
    ------------
    G: igraph network object where each node has a time attribute

    metric: string of the vertex metrics we want to compute
    (pagerank, indegree, etc)

    year: is year of the network if we are passing a time truncated network

    - katz


    d_ means for directed graph
    u_ means for undirected graph
    Output
    -------
    metric: an array of size G.vs that contains the metric for G's vertices
            or does not return value on invalid metric parameter
    """

    try:
        # calculates metric which matched parameter
        if metric == 'katz':
            metric_column = nx.katz_centrality(Gnx)

    except Exception:
        print 'problem with %s' % metric
        metric_column = metric_column = [np.nan] * len(G.vs)

    return metric_column
def CentralityPoint2D(graph, numberOfPoints, typePlot):
    """Plot 3D centrality based on type."""
    points = dict()

    c_eigenvector = nx.katz_centrality(graph)
    c_eigenvector = heapq.nlargest(numberOfPoints,
                                   list(c_eigenvector.values()))
    max_eigenvector = max(c_eigenvector)
    points['Eigenvalues'] = c_eigenvector

    c_betweenness = nx.betweenness_centrality(graph)
    c_betweenness = heapq.nlargest(numberOfPoints,
                                   list(c_betweenness.values()))
    max_betweenness = max(c_betweenness)
    points['Betweenness'] = c_betweenness

    c_closeness = nx.closeness_centrality(graph)
    c_closeness = heapq.nlargest(numberOfPoints, list(c_closeness.values()))
    max_closeness = max(c_closeness)
    points['Closeness'] = c_closeness

    c_harmonic = nx.harmonic_centrality(graph)
    c_harmonic = heapq.nlargest(numberOfPoints, list(c_harmonic.values()))
    max_harmonic = max(c_harmonic)
    points['Harmonic'] = c_harmonic

    glCoe = GlobalClusteringCoefficient(graph)

    points['Mix'] = (max_eigenvector, max_harmonic, max_betweenness)
    points['Mix2'] = (max_eigenvector, glCoe, max_closeness)
    points['Mix3'] = (max_eigenvector, glCoe, max_harmonic)
    points['Mix4'] = (max_eigenvector, glCoe,
                      SquareClusteringCoefficient(graph))

    return points[typePlot]
예제 #21
0
def test_dask_katz_centrality(client_connection):
    gc.collect()

    input_data_path = r"../datasets/karate.csv"
    chunksize = dcg.get_chunksize(input_data_path)

    ddf = dask_cudf.read_csv(
        input_data_path,
        chunksize=chunksize,
        delimiter=" ",
        names=["src", "dst", "value"],
        dtype=["int32", "int32", "float32"],
    )

    df = cudf.read_csv(
        input_data_path,
        delimiter=" ",
        names=["src", "dst", "value"],
        dtype=["int32", "int32", "float32"],
    )

    g = cugraph.DiGraph()
    g.from_cudf_edgelist(df, "src", "dst")

    dg = cugraph.DiGraph()
    dg.from_dask_cudf_edgelist(ddf, "src", "dst")

    largest_out_degree = g.degrees().nlargest(n=1, columns="out_degree")
    largest_out_degree = largest_out_degree["out_degree"].iloc[0]
    katz_alpha = 1 / (largest_out_degree + 1)

    mg_res = dcg.katz_centrality(dg, alpha=katz_alpha, tol=1e-6)
    mg_res = mg_res.compute()

    import networkx as nx
    from cugraph.tests import utils
    NM = utils.read_csv_for_nx(input_data_path)
    Gnx = nx.from_pandas_edgelist(
        NM, create_using=nx.DiGraph(), source="0", target="1"
    )
    nk = nx.katz_centrality(Gnx, alpha=katz_alpha)
    import pandas as pd
    pdf = pd.DataFrame(nk.items(), columns=['vertex', 'katz_centrality'])
    exp_res = cudf.DataFrame(pdf)
    err = 0
    tol = 1.0e-05

    compare_res = exp_res.merge(
        mg_res, on="vertex", suffixes=["_local", "_dask"]
    )

    for i in range(len(compare_res)):
        diff = abs(
            compare_res["katz_centrality_local"].iloc[i]
            - compare_res["katz_centrality_dask"].iloc[i]
        )
        if diff > tol * 1.1:
            err = err + 1
    assert err == 0
예제 #22
0
 def test_P3(self):
     """Katz centrality: P3"""
     alpha = 0.1
     G = nx.path_graph(3)
     b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449, 2: 0.5598852584152162}
     b = nx.katz_centrality(G, alpha)
     for n in sorted(G):
         assert b[n] == pytest.approx(b_answer[n], abs=1e-4)
예제 #23
0
파일: ANN.py 프로젝트: iSTB/Python-neurons
	def run(self,steps):
		for _ in xrange(steps):
			self.update()

		self.prs =nx.pagerank(self.G)			
		self.close = nx.closeness_centrality(self.G)
		self.bet = nx.betweenness_centrality(self.G)
		self.katz = nx.katz_centrality(self.G)
def katz_centrality(G, dim):
    katz_cent_matrix = np.zeros((dim, 1))
    katz_cent_dict = nx.katz_centrality(G)
    z = 0
    for i in hosts_list:
        katz_cent_matrix[z] = katz_cent_dict.get(i)
        z += 1
    return katz_cent_matrix
 def readGraph(self):
     self.readingUsersFile()
     self.graph = networkx.read_graphml(self.graphFile)
     (self.followees, self.followers) = self.getFolloweesAndFollowers(self.graph)
     self.pageRanks = networkx.pagerank(self.graph)
     self.katz = networkx.katz_centrality(self.graph)
     self.paths = networkx.shortest_path(self.graph)
     return self.graph
예제 #26
0
 def test_beta_as_dict(self):
     alpha = 0.1
     beta = {0: 1.0, 1: 1.0, 2: 1.0}
     b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449, 2: 0.5598852584152162}
     G = nx.path_graph(3)
     b = nx.katz_centrality(G, alpha, beta)
     for n in sorted(G):
         assert b[n] == pytest.approx(b_answer[n], abs=1e-4)
예제 #27
0
def competitive_part(links_dataset, number):
    # Edge Filtering
    # k = number of edges we remove per iteration
    k = 1000
    G = nx.from_pandas_edgelist(links_dataset.init_graph,
                                'target',
                                'source',
                                edge_attr=True,
                                create_using=nx.Graph())
    removed_edges = list()
    for i in range(number // k):
        print("iter = ", i)

        # bridges = list(nx.bridges(G))
        ranking = nx.katz_centrality(G, max_iter=100, weight='weight')
        mean_katz_centrality = np.mean(list(ranking.values()))
        weight_dict = dict()

        # reweight edges
        for edge in G.edges():
            print(edge)
            WG = G.copy()
            WG.remove_edge(edge[0], edge[1])
            _katz = nx.katz_centrality(G,
                                       max_iter=20,
                                       weight='weight',
                                       tol=10e-4)
            _mean_katz_centrality = np.mean(list(ranking.values()))
            weight_dict[edge] = mean_katz_centrality - _mean_katz_centrality

        # sort descending
        weight_dict = sorted(weight_dict.items(),
                             key=lambda x: x[1],
                             reverse=True)

        i = 0
        # remove bridges with maximal weighted span
        for edge in dict(weight_dict).keys():
            if i == k:
                break
            removed_edges.append(edge)
            G.remove_edge(edge[0], edge[1])
            i += 1

    return removed_edges
예제 #28
0
    def katz(self):
        """Compute the Katz centrality for the nodes of the graph G.

        Returns
        -------
        nodes : dictionary
        Dictionary of nodes with Katz centrality as the value.
        """
        return nx.katz_centrality(self._graph, weight=self._weight_field)
예제 #29
0
 def test_maxiter(self):
     alpha = 0.1
     G = nx.path_graph(3)
     max_iter = 0
     try:
         b = nx.katz_centrality(G, alpha, max_iter=max_iter)
     except nx.NetworkXError as e:
         assert str(max_iter) in e.args[0], "max_iter value not in error msg"
         raise # So that the decorater sees the exception.
def kaltzCentrality(graph, numberOfPoints):
    """Compute the largest kalz centralities coefficients of a graph.

    You can specify the number of points to output.
    """
    c_eigenvector = nx.katz_centrality(graph)
    c_eigenvector = heapq.nlargest(numberOfPoints,
                                   list(c_eigenvector.values()))
    return c_eigenvector
예제 #31
0
 def test_beta_as_dict(self):
     alpha = 0.1
     beta = {0: 1.0, 1: 1.0, 2: 1.0}
     b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449,
                 2: 0.5598852584152162}
     G = networkx.path_graph(3)
     b = networkx.katz_centrality(G, alpha, beta)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n], places=4)
예제 #32
0
 def test_P3(self):
     """Katz centrality: P3"""
     alpha = 0.1
     G = nx.path_graph(3)
     b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449,
                 2: 0.5598852584152162}
     b = nx.katz_centrality(G, alpha)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n], places=4)
예제 #33
0
 def test_P3(self):
     """Katz centrality: P3"""
     alpha = 0.1
     G = networkx.path_graph(3)
     b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449,
                 2: 0.5598852584152162}
     b = networkx.katz_centrality(G, alpha)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n], places=4)
예제 #34
0
    def calculate_scores(self):
        """Computes the Kats centrality indexes for a given graph and with the tunable alpha parameter.

        Returns:
            :returns: kc. Returns the Kats centrality indexes.
            :rtype: set
        """
        kc = nx.katz_centrality(self.graph, self.alpha, beta=0).items()
        return kc
def get_katz_centrality(Graph):
    dictionary = nx.katz_centrality(Graph, max_iter=2000)
    D = []
    for name in dictionary:
        D.append((name, dictionary[name]))

    D.sort(key=lambda x: x[1])
    D.reverse()
    return D
예제 #36
0
def comparisons(G):
    evec = nx.eigenvector_centrality(G)
    print "EVEC:",evec

    pagerank = nx.pagerank(G)
    print "PAGERANK: ", pagerank

    katz = nx.katz_centrality(G)
    print "KATZ: ", katz
예제 #37
0
 def test_beta_as_dict(self):
     alpha = 0.1
     beta = {0: 1.0, 1: 1.0, 2: 1.0}
     b_answer = {0: 0.5598852584152165, 1: 0.6107839182711449,
                 2: 0.5598852584152162}
     G = nx.path_graph(3)
     b = nx.katz_centrality(G, alpha, beta)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n], places=4)
예제 #38
0
 def test_maxiter(self):
     alpha = 0.1
     G = nx.path_graph(3)
     max_iter = 0
     try:
         b = nx.katz_centrality(G, alpha, max_iter=max_iter)
     except nx.NetworkXError as e:
         assert str(
             max_iter) in e.args[0], "max_iter value not in error msg"
         raise  # So that the decorater sees the exception.
예제 #39
0
def katz(g):
    eigv = eig(nx.adjacency_matrix(g, weight='diff').todense())
    max_eigv = max(eigv[0])
    max_eigv_reciprocal = 1./max_eigv
    alpha = max_eigv_reciprocal
    alpha = 0.9 * alpha
    beta = 1 - alpha
    katz_centrality = nx.katz_centrality(g, alpha=alpha, beta=beta,
                                         weight='diff')
    return katz_centrality
def katz_cent(G):

    A = nx.to_numpy_matrix(G)

    e = np.linalg.eigvals(A)

    maxe = np.max(np.real(e))

    alpha = 1 / (2 * maxe)

    return nx.katz_centrality(G, alpha=alpha)
예제 #41
0
    def compute_mean_katz_cent(self):
        """Computes the mean Katz centrality of a network of neurons.

           The centrality of a node measures how many of the shortest paths
           between all other nodes pairs in the network pass through it. A node
           with high centrality is thus crucial to efficient communication.
           (Bullmore et. al. 2009)

           https://en.wikipedia.org/wiki/Katz_centrality
        """
        graph_centrality = nx.katz_centrality(self.network, weight="weight")
        return np.mean(list(graph_centrality.values()))
예제 #42
0
def node_katz_centrality(nx_graph, dict=False):
    """
	Calculate the katz centrality for the nodes
	on the graph.
	"""
    katz_cent = nx.katz_centrality(nx_graph, max_iter=2000, tol=1e-03)

    if not dict:
        katz_cent = [(node, katz_cent[node])
                     for node in sorted(katz_cent, key=lambda v: katz_cent[v])]

    return katz_cent
예제 #43
0
 def test_K5_unweighted(self):
     """Katz centrality: K5"""
     G = nx.complete_graph(5)
     alpha = 0.1
     b = nx.katz_centrality(G, alpha, weight=None)
     v = math.sqrt(1 / 5.0)
     b_answer = dict.fromkeys(G, v)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n])
     nstart = dict([(n, 1) for n in G])
     b = nx.eigenvector_centrality_numpy(G)
     for n in sorted(G):
         assert_almost_equal(b[n], b_answer[n], places=3)
예제 #44
0
def centralityMeasures(G):
	# Betweenness
	# betw = nx.betweenness_centrality(G, normalized=True, weight='weight')
	# print sorted([(k,v) for k,v in betw.iteritems()], key= lambda x:(-x[1],x[0]))

	# clsn = nx.closeness_centrality(G, normalized=True)
	# print sorted([(k,v) for k,v in clsn.iteritems()], key= lambda x:(-x[1],x[0]))

	# evec = nx.eigenvector_centrality(G, weight='weight')
	# print sorted([(k,v) for k,v in evec.iteritems()], key= lambda x:(-x[1],x[0]))

	katz = nx.katz_centrality(G, normalized=True, weight='weight', alpha=0.005)
	print sorted([(k,v) for k,v in katz.iteritems()], key= lambda x:(-x[1],x[0]))
예제 #45
0
 def test_multiple_alpha(self):
     alpha_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
     for alpha in alpha_list:
         b_answer = {0.1: {0: 0.5598852584152165, 1: 0.6107839182711449,
                           2: 0.5598852584152162},
                     0.2: {0: 0.5454545454545454, 1: 0.6363636363636365,
                           2: 0.5454545454545454},
                     0.3: {0: 0.5333964609104419, 1: 0.6564879518897746,
                           2: 0.5333964609104419},
                     0.4: {0: 0.5232045649263551, 1: 0.6726915834767423,
                           2: 0.5232045649263551},
                     0.5: {0: 0.5144957746691622, 1: 0.6859943117075809,
                           2: 0.5144957746691622},
                     0.6: {0: 0.5069794004195823, 1: 0.6970966755769258,
                           2: 0.5069794004195823}}
         G = nx.path_graph(3)
         b = nx.katz_centrality(G, alpha)
         for n in sorted(G):
             assert_almost_equal(b[n], b_answer[alpha][n], places=4)
def calculate_center(tcgaSubgraph):
    """
    DESCRIPTION: Calculate centrality measures
    INPUT: Graph object
    OUTPUT: Dictionary of dictionaries, each being a different centrality
    measure
    """
    # calculate maximum eigenvalue of graph
    denseMat = nx.adjacency_matrix(tcgaSubgraph).todense()  # make adj mat
    eigs = numpy.linalg.eig(denseMat)[0]  # calculate eigenvalues
    maxEig = max(eigs)
    alpha = 1 / maxEig.real

    # calculate centrality measures
    centers = {}
    centers["eigen"] = nx.eigenvector_centrality(tcgaSubgraph)
    centers["degree"] = nx.degree_centrality(tcgaSubgraph)
    centers["katz"] = nx.katz_centrality(tcgaSubgraph, alpha=alpha - 0.01, beta=1.0)
    centers["pagerank"] = nx.pagerank(tcgaSubgraph)
    return centers
예제 #47
0
def centrality_calculation_by_networkx(G):
    '''
    使用 networkx 计算 Centrality
    '''

    d_c = nx.degree_centrality(G)

    k_z = nx.katz_centrality(
        G=G,
        alpha=0.3,
        beta=0.3,
        max_iter=1000,
        tol=1.0e-6,
        nstart=None,
        normalized=True)

    # 归一化,每个元素除以集合中最大元素
    d_c = [round(1.0 * item / max(d_c), 4) for item in d_c]
    k_z = [round(1.0 * item / max(k_z), 4) for item in k_z]

    nx_list = [{'Degree': d_c}, {'Katz': k_z}]

    return nx_list
예제 #48
0
def test(G):

    d_c = nx.degree_centrality(G)

    e_v = nx.eigenvector_centrality(G=G, max_iter=1000, tol=1.0e-6)

    k_z = nx.katz_centrality(
        G=G,
        alpha=0.3,
        beta=0.3,
        max_iter=1000,
        tol=1.0e-6,
        nstart=None,
        normalized=True)

    p_k = nx.pagerank(G=G, alpha=0.3, personalization=None, max_iter=100,
                      tol=1.0e-6, nstart=None, weight='weight', dangling=None)

    b_c = nx.betweenness_centrality(G=G, k=None, normalized=True,
                                    weight=None, endpoints=False, seed=None)

    c_c = nx.closeness_centrality(G=G, u=None, distance=None, normalized=True)

    d_c = [round(1.0 * item / max(d_c), 4) for item in d_c]
    k_z = [round(1.0 * item / max(k_z), 4) for item in k_z]
    e_v = [round(1.0 * item / max(e_v), 4) for item in e_v]
    b_c = [round(1.0 * item / max(b_c), 4) for item in b_c]
    c_c = [round(1.0 * item / max(c_c), 4) for item in c_c]
    p_k = [round(1.0 * item / max(p_k), 4) for item in p_k]

    return [{'Eigenvector': e_v},
            {'Betweenness': b_c},
            {'Closeness': c_c},
            {'PageRank': p_k},
            {'Degree': d_c},
            {'Katz': k_z}]
dep_count = tz.pipe(edges, c.pluck(1), tz.frequencies)
dep_count['skimage']
import networkx as nx
deps = nx.DiGraph()
'scikit-image' in packages
'scikit-learn' in packages
for u, v in edges:
    u = u.replace('scikit-', 'sk')
    v = v.replace('scikit-', 'sk')
    deps.add_edge(u, v)
    
deps.number_of_edges()
deps.number_of_nodes()
deps.node['skimage']
deps.in_edges('skimage')
nodes = nx.katz_centrality(deps)
central = sorted(deps.nodes(), key=nodes.__getitem__, reverse=True)
central[:10]
central[:20]
central[:40]
central[40:80]
central.index('skimage')
central.index('scipy')
import pickle
stdlib = pickle.load(open('/Users/jni/projects/depsy/data/python_standard_libs.pickle', 'rb'))
central_nonstd = list(tz.filter(lambda x: x not in stdlib, central))
len(central_nonstd)
central_nonstd.index('scipy')
len(central)
central[:5]
nx.is_connected(deps.to_undirected())
예제 #50
0
 def test_maxiter(self):
     alpha = 0.1
     G = networkx.path_graph(3)
     b = networkx.katz_centrality(G, alpha, max_iter=0)
예제 #51
0
 def test_empty(self):
     e = networkx.katz_centrality(networkx.Graph(), 0.1)
def make_net(centrality_name, in_path, out_path):
	#sample code
		#import _2_time_based_data_network_feature
		#make_net_in_path = "../3.time_based_data/1.cite_relation_devide/"
		#make_net_out_path = "../3.time_based_data/2.centrality_data/"
		#_2_time_based_data.make_net( "in_degree", make_net_in_path, make_net_out_path)

	#네트워크를 만들고 Centurality를 계산하고 저장할 것이다.
	import networkx as nx
	global Dump
	Dump = {}
	make_net_initialize(in_path)
	start_time = time.time()
	temp_start_time = time.time()

	print "=============		make_net start:" + centrality_name + "		=============="
	print "=============		from 1951 to 2015		=============="

	for year in range(1951, 2016):
		print year
		f_in = open(in_path + str(year) + "_cite.csv","r")
		lines = f_in.readlines()
		f_in.close()
		edge_list = []

		for line in lines:
			data = line.split(",")
			data_tuple = (data[0].strip(), data[1].strip())
			edge_list.append(data_tuple)

		Net = nx.DiGraph(edge_list)
		Cen_in = {}
		if (centrality_name == "in_degree"):
			Cen_in = nx.in_degree_centrality(Net)
		elif (centrality_name == "degree"):
			Cen_in = nx.degree_centrality(Net)
		elif (centrality_name == "eigenvector"):
			Cen_in = nx.eigenvector_centrality_numpy(Net)
		elif (centrality_name == "katz"):
			Cen_in = nx.katz_centrality(Net)
		elif (centrality_name == "pagerank"):
			Cen_in = nx.pagerank(Net)
		elif (centrality_name == "communicability"):
			Net = nx.Graph(edge_list)
			Cen_in = nx.communicability_centrality(Net)
		elif (centrality_name == "load"):
			Cen_in = nx.load_centrality(Net)
		
		for j in Cen_in:
			key = j
			val = Cen_in[j]
			Dump[key][year] = val

	#저장하는 코드 
	f_out = open(out_path + centrality_name +"_centrality.csv", "w")
	for key in Dump:
		line = str(key)
		for year in range(1951, 2016):
			data = Dump[key].get(year, 0)
			line = line + ","+ str(data)
		line = line + "\n"
		f_out.write(line)
	f_out.close()

	print "=============		make_net end			=============="
	print(centrality_name + "takes %s seconds" % (time.time() - temp_start_time))
	temp_start_time = time.time()
예제 #53
0
파일: nodes.py 프로젝트: Behoston/biol_sys
def add_katz_node(graf):
    print "Adding katz to nodes"
    k_dict = nx.katz_centrality(graf)
    nx.set_node_attributes(graf, 'kat', k_dict)
예제 #54
0
        for r in results:
            edge_list.append((r[0],r[1]))
        cur.close()
        
connection.close() 

print edge_list

#set up a blank graph
G=nx.Graph()

#add edges from edge list to graph G
G.add_edges_from(edge_list)
#calculate degree and katz centrality in graph G
deg1 = nx.degree_centrality(G)
katz1 = nx.katz_centrality(G)
#print the nodes and edges from graph G
print 'Graph G has the following nodes: ',(G.nodes())
print 'Graph G has the following edges: ',(G.edges())
print 'Graph has degree centrality: ',deg1
print 'Graph has katz centrality: ', katz1 
#
#edge_list_2 = []
#sql = "select call_from, call_to from random_calls where c_year = '2012' and c_week_no = '2'"
#cur.execute(sql)
#results = cur.fetchall()
#for r in results:
#    edge_list_2.append((r[0],r[1]))
#
#print edge_list_2
#
예제 #55
0
 def test_katz_centrality_unweighted(self):
     G = self.H
     alpha = self.H.alpha
     p = nx.katz_centrality(G, alpha)
     for (a, b) in zip(list(p.values()), self.G.evc):
         assert_almost_equal(a, b)
예제 #56
0
 def test_bad_beta_numbe(self):
     G = nx.Graph([(0,1)])
     e = nx.katz_centrality(G, 0.1,beta='foo')
예제 #57
0
 def test_bad_beta(self):
     G = nx.Graph([(0,1)])
     beta = {0:77}
     e = nx.katz_centrality(G, 0.1,beta=beta)
예제 #58
0
 def test_empty(self):
     e = nx.katz_centrality(nx.Graph(), 0.1)
     assert_equal(e, {})
예제 #59
0
 def test_multigraph(self):
     e = nx.katz_centrality(nx.MultiGraph(), 0.1)
예제 #60
0
    def classesGraph(self,c,files_dict,scope):
        edges = []
        interfaces = 'select path, superClass from classes'
        files_Names = [x.split(".")[-1] for x in files_dict]
        pathNames = {}
        for row in c.execute(interfaces):
            nameClass = (row[0]).split(".")[-1]
            pathNames[nameClass] = row[0]
            nameSuper = (row[1]).split(".")[-1]
            if (nameClass in files_Names):
                sup = 'root'
                if (nameSuper in files_Names):
                    sup = nameSuper
                edges.append((sup, nameClass))
        g = networkx.DiGraph()
        g.add_node('root')
        g.add_edges_from(edges)
        paths = networkx.single_source_dijkstra_path(g, 'root')

        methods={}
        for x in files_Names:
            methods[x]=[]
        methods['root']=[]
        sigsEdges=[]
        interfaces='select classPath,signature,return, name from methods where scope='+scope
        for row in c.execute(interfaces):
            nameClass = (row[0]).split(".")[-2]
            if nameClass in files_Names:
                methods[nameClass].append(row[3])
            retAdd=[]
            if row[2] in files_Names:
                retAdd=[(nameClass,row[2])]
            sigsEdges.extend([ (nameClass,x) for x in  self.signatureTolst(row[1]) if x in files_Names]+retAdd)

        fields='select classPath, name ,type from fields where scope='+scope
        fields_d={}
        for x in files_Names:
            fields_d[x]=[]
        fields_d['root']=[]
        for row in c.execute(fields):
            nameClass = (row[0]).split(".")[-2]
            if nameClass in files_Names:
                fields_d[nameClass].append(row[1])
            type_f=[]
            if row[2] in files_Names:
                type_f=[(nameClass,row[2])]
            sigsEdges.extend(type_f)


        g2=networkx.DiGraph()
        g2.add_node('root')
        g2.add_edges_from(sigsEdges)
        counts= Counter(sigsEdges)

        g3=networkx.DiGraph()
        g3.add_node('root')
        for e,w in counts.items():
            u,v=e
            g3.add_edge(u,v,weight=w)



        self.addFromDict(files_dict,g2.out_degree(),pathNames)
        self.addFromDict(files_dict,networkx.katz_centrality(g2),pathNames)
        self.addFromDict(files_dict,networkx.core_number(g2),pathNames)
        self.addFromDict(files_dict,networkx.closeness_centrality(g2),pathNames)
        self.addFromDict(files_dict,networkx.degree_centrality(g2),pathNames)
        self.addFromDict(files_dict,networkx.out_degree_centrality(g2),pathNames)
        self.addFromDict(files_dict,g3.out_degree(),pathNames)
        self.addFromDict(files_dict,networkx.core_number(g3),pathNames)
        self.addFromDict(files_dict,networkx.closeness_centrality(g3),pathNames)
        self.addFromDict(files_dict,networkx.degree_centrality(g3),pathNames)
        self.addFromDict(files_dict,networkx.out_degree_centrality(g3),pathNames)
        #gi = igraph.Graph(edges = g2.edges(),directed=True)

        #gi.modularity()

        #self.addFromDict(files_dict,gi.community_optimal_modularity(),pathNames)


        networkx.write_graphml(g,"C:\GitHub\weka\\graph.graphml")