예제 #1
0
    def test_handle_errors(self):
        with self.assertRaises(ValueError):
            # size of target data not the same as
            # size of input data.
            pnnet = algorithms.PNN(verbose=False)
            pnnet.train(np.array([[0], [0]]), np.array([0]))

        with self.assertRaises(ValueError):
            # 2-D target vector (must be 1-D)
            pnnet = algorithms.PNN(verbose=False)
            pnnet.train(np.array([[0]]), np.array([[0, 0]]))

        with self.assertRaises(ValueError):
            # invalid feature size for prediction data
            pnnet = algorithms.PNN(verbose=False)
            pnnet.train(np.array([[0], [0]]), np.array([0]))
            pnnet.predict(np.array([[0]]))

        msg = "hasn't been trained"
        with self.assertRaisesRegexp(NotTrained, msg):
            # predict without training
            pnnet = algorithms.PNN(verbose=False)
            pnnet.predict(np.array([[0]]))

        with self.assertRaises(ValueError):
            # different number of features for
            # train and test data
            grnet = algorithms.PNN(verbose=False)
            grnet.train(np.array([[0]]), np.array([0]))
            grnet.predict(np.array([[0, 0]]))
예제 #2
0
    def test_predict_probability(self):
        dataset = datasets.load_digits()
        x_train, x_test, y_train, y_test = train_test_split(
            dataset.data, dataset.target, train_size=0.7
        )

        x_train_before = x_train.copy()
        x_test_before = x_test.copy()
        y_train_before = y_train.copy()

        number_of_classes = len(np.unique(dataset.target))

        pnnet = algorithms.PNN(verbose=False, std=10)
        pnnet.train(x_train, y_train)
        result = pnnet.predict_proba(x_test)

        n_test_inputs = x_test.shape[0]
        self.assertEqual(result.shape, (n_test_inputs, number_of_classes))

        total_classes_prob = np.round(result.sum(axis=1), 10)
        np.testing.assert_array_equal(
            total_classes_prob,
            np.ones(n_test_inputs)
        )
        old_result = result.copy()

        # Test problem with variable links
        np.testing.assert_array_equal(x_train, x_train_before)
        np.testing.assert_array_equal(x_test, x_test_before)
        np.testing.assert_array_equal(y_train, y_train_before)

        x_train[:, :] = 0
        result = pnnet.predict_proba(x_test)
        total_classes_prob = np.round(result.sum(axis=1), 10)
        np.testing.assert_array_almost_equal(result, old_result)
예제 #3
0
    def test_basic_storage(self):
        input_data = np.random.random((100, 2))
        target_data = np.random.random(100) > 0.5

        pnn = algorithms.PNN(std=0.123, verbose=True)
        pnn.train(input_data, target_data)

        stored_pnn = pickle.dumps(pnn)
        loaded_pnn = pickle.loads(stored_pnn)

        testcases = [
            ('pnn', pnn),
            ('loaded_pnn', loaded_pnn),
        ]

        for name, network in testcases:
            print("Test case name: {}".format(name))

            self.assertAlmostEqual(network.std, 0.123)
            self.assertAlmostEqual(network.verbose, True)

            with catch_stdout() as out:
                network.logs.stdout = out
                network.logs.write("Test message")
                terminal_output = out.getvalue()
                self.assertIn("Test message", terminal_output)

        pnn_prediction = pnn.predict(input_data)
        loaded_pnn_prediction = loaded_pnn.predict(input_data)

        np.testing.assert_array_almost_equal(loaded_pnn_prediction,
                                             pnn_prediction)
예제 #4
0
def test_with_noise():
    (x_train, y_train), (x_test, y_test) = dataset8.load_data(mode=0)

    pnn = algorithms.PNN(std=1, batch_size=128, verbose=True)

    pnn.train(x_train[0:10000], y_train[0:10000])

    y_predicted = pnn.predict(x_test)

    local_path = 'MY_IMAGES_GIMP/'
    for nTest in np.arange(0, 10, 1):
        # convert to numpy array
        x = get_pxs(local_path + str(nTest) + '.png')

        # Inverting and normalizing image
        x = 255 - x
        x /= 255
        x = np.expand_dims(x, axis=0)
        x.shape = (1, 784)

        prediction = pnn.predict(x)

        print('REAL \t\tPREDICTED')
        print(str(nTest) + '\t\t\t' + str(prediction[0]))

    print("accuracy = %.2f" % (metrics.accuracy_score(y_predicted, y_test)))

    for i in range(0, 10000):
        x_test[i] = noise(x_test[i], 500)

    y_predicted = pnn.predict(x_test)

    print("accuracy on noise data = %.2f" %
          (metrics.accuracy_score(y_predicted, y_test)))
예제 #5
0
 def __init__(self, std=10):
     """
     :param std: float
                 standard deviation for PDF function, default to 0.1.
     :return:
     """
     self.pnn = algorithms.PNN(std=std, verbose=False)
예제 #6
0
def clasification():
    df = pd.DataFrame()
    for name, adress, price in db.session.query(Place.place_name, Place.place_adress, Place.place_price):
        print(name, adress, price)
        df = df.append({"name": name, "adress": adress, "price": price}, ignore_index=True)
    # db.session.close()

    X = pd.get_dummies(data=df[['name', 'adress']])
    mean_price = df['price'].mean()

    df.loc[df['price'] < mean_price, 'quality'] = 0
    df.loc[df['price'] >= mean_price, 'quality'] = 1
    print(df)
    print(X)
    pnn = algorithms.PNN(std=10, verbose=False)

    pnn.train(X, df['quality'])
    test_str = ['club', 'Ковальський провулок']
    count_columns = len(X.columns)
    test_list = np.array([0] * count_columns)
    test_list[0] = 1
    test_list[-2] = 1
    test_list = np.reshape(test_list, (1, len(test_list)))
    print(test_list)
    y_predicted = pnn.predict(test_list)
    result = "Ні"
    if y_predicted - 1 < 0.0000000000001:
        result = "Так"

    return render_template('clasification.html', y_predicted=result, test_data=test_list[0], test_str=test_str)
예제 #7
0
def clasification():
    df = pd.DataFrame()
    for name, company, salary in db.session.query(OrmVacancy.vacancy_name, OrmVacancy.vacancy_company, OrmVacancy.vacancy_salary):
        print(name, company, salary)
        df = df.append({"name": name, "company": company, "salary": salary}, ignore_index=True)

    mean_p = df['salary'].mean()
    df.loc[df['salary'] < mean_p, 'quality'] = 0
    df.loc[df['salary'] >= mean_p, 'quality'] = 1
    X = pd.get_dummies(data=df[['name', 'company']])
    print(df)
    print(X)
    pnn = algorithms.PNN(std=10, verbose=False)
    pnn.train(X, df['quality'])

    count_columns = len(X.columns)
    string_test = ['frontend', 'google']
    test_list = [0] * count_columns
    test_list[0] = 1
    test_list[-1] = 1
    print(test_list)
    y_predicted = pnn.predict([test_list])
    result = "Ні"
    if y_predicted - 1 < 0.0000001:
        result = "Так"

    return render_template('clasification.html', y_predicted=result, test_data=test_list, string_test=string_test)
예제 #8
0
파일: gbayes.py 프로젝트: Freakwill/Thomas
    def fromPN(cls, pos_train, neg_train, z_trains, y_train, models=None):
        '''
        a neural network will be trained with z_trains, y_train
        
        Arguments:
            pos_train, neg_train same in super class
            z_trains {List[DateFrame]}
            y_train {Array}
        
        Returns:
            ZeroOneSemiNaiveBayesClassifier
        '''

        sbc = super(ZeroOneHemiNaiveBayesClassifier,
                    cls).fromPN(pos_train, neg_train)
        if models is None:
            sbc.models = [
                algorithms.PNN(std=np.std(z_train.values), verbose=False)
                for z_train in z_trains
            ]
        else:
            sbc.models = [
                copy.copy(model_dict[model])
                if isinstance(model, str) else model for model in models
            ]
        sbc.features2 = [z_train.columns for z_train in z_trains]
        sbc.fit(z_trains, y_train)
        return sbc
예제 #9
0
    def test_basic_storage(self):
        X = np.random.random((100, 2))
        y = np.random.random(100) > 0.5

        # We keep verbose=True in order to see if value will
        # be True when we restore it from the pickle object.
        pnn = algorithms.PNN(std=0.123, verbose=True)
        pnn.train(X, y)

        stored_pnn = pickle.dumps(pnn)
        loaded_pnn = pickle.loads(stored_pnn)

        testcases = [
            ('pnn', pnn),
            ('loaded_pnn', loaded_pnn),
        ]

        for name, network in testcases:
            print("Test case name: {}".format(name))

            self.assertAlmostEqual(network.std, 0.123)
            self.assertAlmostEqual(network.verbose, True)

            with catch_stdout() as out:
                network.logs.stdout = out
                network.logs.write("Test message")
                terminal_output = out.getvalue()
                self.assertIn("Test message", terminal_output)

        pnn_prediction = pnn.predict(X)
        loaded_pnn_prediction = loaded_pnn.predict(X)

        np.testing.assert_array_almost_equal(loaded_pnn_prediction,
                                             pnn_prediction)
예제 #10
0
def clasification():
    df = pd.DataFrame()
    for file_text, rating in db.session.query(ormFiles.file_text,
                                              ormFiles.rating):
        print(file_text, rating)
        df = df.append({
            "file_name": file_text,
            "rating": float(rating)
        },
                       ignore_index=True)
    # db.session.close()

    df['count_symbols'] = df['file_name'].apply(len)
    df.loc[df['rating'] < 0.33, 'quality'] = 0
    df.loc[df['rating'] >= 0.33, 'quality'] = 1
    print(df)
    pnn = algorithms.PNN(std=10, verbose=False)
    pnn.train(df['count_symbols'], df['quality'])

    test_data = 'ewij weioh uia guu aweg'
    t_test_data = len(test_data)
    y_predicted = pnn.predict([t_test_data])
    result = "Ні"
    if y_predicted - 1 < 0.0000000000001:
        result = "Так"

    return render_template('clasification.html',
                           y_predicted=result,
                           test_data=test_data)
예제 #11
0
    def test_cutting_exceptions(self):
        with self.assertRaises(ValueError):
            surgery.cut(algorithms.PNN(), 0, 1)

        with self.assertRaises(ValueError):
            surgery.cut(self.network, 0, 10)

        with self.assertRaises(ValueError):
            surgery.cut(self.network, 0, 0)
예제 #12
0
def PNN(X_train, X_test, y_train, y_test, X_dummy):
    environment.reproducible()
    pnn = algorithms.PNN(std=0.1, verbose=False)
    pnn.train(X_train, y_train)
    #print 'done trainin'
    y_predicted = pnn.predict(X_test)
    y_dummy = pnn.predict(X_dummy)
    #print y_predicted
    return y_dummy, y_predicted, metrics.accuracy_score(y_test, y_predicted)
예제 #13
0
    def test_predict_different_inputs(self):
        pnnet = algorithms.PNN(verbose=False)

        data = np.array([[1, 2, 3]]).T
        target = np.array([[1, 0, 1]]).T

        pnnet.train(data, target)
        self.assertInvalidVectorPred(pnnet, data.ravel(), target.ravel(),
                                     decimal=2)
예제 #14
0
def pnnTrainTestNoNorm(X, Y):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.7)
    pnn = algorithms.PNN(std=10, verbose=False)
    pnn.train(X_train, Y_train)

    y_predicted = pnn.predict(X_test)
    score = metrics.accuracy_score(Y_test, y_predicted)
    print("PNN score: ", score)
    return score, y_predicted
예제 #15
0
    def test_pnn_non_trivial_class_names_as_strings(self):
        # Issue #177: https://github.com/itdxer/neupy/issues/177
        x = np.array([10] * 10 + [20] * 10 + [30] * 10)
        y = np.array(['cat'] * 10 + ['dog'] * 10 + ['horse'] * 10)

        pnn = algorithms.PNN(std=1)
        pnn.train(x, y)
        y_predicted = pnn.predict(x)

        np.testing.assert_array_equal(y, y_predicted)
        self.assertEqual(sorted(pnn.classes), ['cat', 'dog', 'horse'])
예제 #16
0
def test0():
    """
    daemon
    :return:
    """
    dataset = datasets.load_digits()
    x_train, x_test, y_train, y_test = train_test_split(dataset.data, dataset.target, train_size=0.7)
    nw = algorithms.PNN(std=10, verbose=False)
    nw.train(x_train, y_train)
    result = nw.predict(x_test)
    print metrics.accuracy_score(y_test, result)
예제 #17
0
    def test_pnn_non_trivial_class_names(self):
        # Issue #177: https://github.com/itdxer/neupy/issues/177
        x = np.array([10] * 10 + [20] * 10 + [30] * 10)
        y = np.array([1] * 10 + [2] * 10 + [3] * 10)

        pnn = algorithms.PNN(std=1)
        pnn.train(x, y)
        y_predicted = pnn.predict(x)

        np.testing.assert_array_almost_equal(y, y_predicted)
        self.assertEqual(sorted(pnn.classes), [1, 2, 3])
예제 #18
0
    def test_digit_prediction(self):
        dataset = datasets.load_digits()
        x_train, x_test, y_train, y_test = train_test_split(
            dataset.data, dataset.target, train_size=0.7
        )

        nw = algorithms.PNN(verbose=False, std=10)
        nw.train(x_train, y_train)
        result = nw.predict(x_test)

        self.assertAlmostEqual(metrics.accuracy_score(y_test, result),
                               0.9889, places=4)
예제 #19
0
 def PNN(self):
     X, y = self.prepareData()
     X_train, X_test, y_train, y_test = train_test_split(X,
                                                         y,
                                                         test_size=0.2,
                                                         random_state=1)
     X_train = np.array(X_train, dtype=np.float32)
     X_test = np.array(X_test, dtype=np.float32)
     y_test = np.array(y_test, dtype=np.int32)
     pnn = algorithms.PNN(std=10, verbose=False)
     pnn.train(X_train, y_train)
     y_predict = pnn.predict(X_test)
     return y_predict, y_test
예제 #20
0
파일: test_pnn.py 프로젝트: zhdbeng/neupy
    def test_handle_errors(self):
        with self.assertRaises(ValueError):
            # Wrong: size of target data not the same as size of
            # input data.
            algorithms.PNN(verbose=False).train(np.array([[0], [0]]),
                                                np.array([0]))

        with self.assertRaises(ValueError):
            # Wrong: 2-D target vector (must be 1-D)
            algorithms.PNN(verbose=False).train(np.array([[0], [0]]),
                                                np.array([[0]]))

        with self.assertRaises(AttributeError):
            # Wrong: can't use iterative learning process for this
            # algorithm
            algorithms.PNN(verbose=False).train_epoch()

        with self.assertRaises(ValueError):
            # Wrong: invalid feature size for prediction data
            grnet = algorithms.PNN(verbose=False)
            grnet.train(np.array([[0], [0]]), np.array([0]))
            grnet.predict(np.array([[0]]))
예제 #21
0
def test1():
    """
    数字型类别
    :return:
    """
    dataset = datasets.load_digits()
    n_samples = dataset.data.shape[0]
    ratio = 0.7
    x_train, y_train = dataset.data[0:n_samples * ratio, :], dataset.target[0:n_samples * ratio]
    x_test, y_test = dataset.data[n_samples * ratio:, :], dataset.target[n_samples * ratio:]
    nw = algorithms.PNN(std=10, verbose=False)
    nw.train(x_train, y_train)
    result = nw.predict(x_test)
    print metrics.accuracy_score(y_test, result)
예제 #22
0
def pnnTrainTestNorm(X, Y):
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.7)

    scalar = StandardScaler()
    scalar.fit(X_train)
    X_train_n = scalar.transform(X_train)
    X_test_n = scalar.transform(X_test)

    pnn = algorithms.PNN(std=10, verbose=False)
    pnn.train(X_train_n, Y_train)

    y_predicted = pnn.predict(X_test_n)
    score = metrics.accuracy_score(Y_test, y_predicted)
    print("PNN score: ", score)
    return score, y_predicted
예제 #23
0
def diff_train():
    maes = [0, 0, 0, 0]
    train_size = [24000, 12000, 5000, 2000]
    std = [0.00035, 0.001, 0.0035, 0.01]

    for j in range(0, 4):
        (x_train, y_train), (x_test, y_test) = dataset3.load_data(train_size=train_size[j], show=False)

        pnn = algorithms.PNN(std=std[j], verbose=True)

        pnn.train(x_train, y_train)

        y_predicted = pnn.predict(x_test)

        mae = (np.abs(y_test - y_predicted)).mean()

        plt_x_zero = np.empty(0)
        plt_y_zero = np.empty(0)

        plt_x_one = np.empty(0)
        plt_y_one = np.empty(0)

        acc = 0.0
        i = 0
        for coord in x_test:
            if y_predicted[i] < 0.5:
                plt_x_zero = np.append(plt_x_zero, coord[0])
                plt_y_zero = np.append(plt_y_zero, coord[1])
            elif y_predicted[i] >= 0.5:
                plt_x_one = np.append(plt_x_one, coord[0])
                plt_y_one = np.append(plt_y_one, coord[1])
            i += 1

        plt.plot(plt_x_zero, plt_y_zero, '.')
        plt.plot(plt_x_one, plt_y_one, '.')

        plt.title('2 class classification\ntrain size = %d\nstd = %.4f\nmae =%.4f' % (train_size[j], std[j], mae))

        maes[j] = mae

        plt.xlim(0, 1.3)
        plt.ylim(0, 1)

        plt.legend(('0 class', '1 class'), loc='upper right', shadow=True)

        plt.show()
        plt.close()
    return train_size, std, maes
예제 #24
0
def diff_train_size():
    train_size = [15000, 10000, 5000, 2000]
    std = [2, 1, 0.5, 0.25]

    for j in range(0, 4):
        (x_train, y_train), (x_test, y_test) = dataset8.load_data(mode=0)

        pnn = algorithms.PNN(std=std[j], batch_size=128, verbose=True)

        pnn.train(x_train[0:train_size[j]], y_train[0:train_size[j]])

        y_predicted = pnn.predict(x_test)

        maes = metrics.accuracy_score(y_predicted, y_test)

        print("accuracy = %.2f" % (maes))
def PNN(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        random_state=1)
    X_train = np.array(X_train, dtype=np.float32)
    X_test = np.array(X_test, dtype=np.float32)
    y_test = np.array(y_test, dtype=np.int32)
    sc = StandardScaler()
    sc.fit(X_train)
    X_train = sc.transform(X_train)
    X_test = sc.transform(X_test)
    pnn = algorithms.PNN(std=10, verbose=False)
    pnn.train(X_train, y_train)
    y_predict = pnn.predict(X_test)
    return y_predict, y_test
예제 #26
0
    def test_pnn_mini_batches(self):
        dataset = datasets.load_digits()
        n_classes = len(np.unique(dataset.target))
        x_train, x_test, y_train, y_test = train_test_split(
            dataset.data, dataset.target, train_size=0.7
        )

        pnnet = algorithms.PNN(verbose=False, batch_size=100)
        pnnet.train(x_train, y_train)

        y_predicted = pnnet.predict(x_test)
        self.assertEqual(y_predicted.shape, y_test.shape)

        y_predicted = pnnet.predict_proba(x_test)
        self.assertEqual(y_predicted.shape,
                         (y_test.shape[0], n_classes))
예제 #27
0
    def fromPN(cls, pos_train, neg_train, z_trains, y_train, models=None):
        '''
        a neural network will be trained with z_trains, y_train
        
        Arguments:
            pos_train, neg_train same in super class
            z_trains {List[DateFrame]}
            y_train {Array}
        
        Returns:
            ZeroOneSemiNaiveBayesClassifier
        '''

        sbc = super(ZeroOneHemiNaiveBayesClassifier,
                    cls).fromPN(pos_train, neg_train)
        if models is None or models == 'grnn':
            sbc.models = [
                algorithms.GRNN(std=np.std([
                    a for a in z_train.values.ravel()
                    if str(a) != 'nan' and a != 0
                ]),
                                verbose=False) for z_train in z_trains
            ]
        elif models == 'pnn':
            sbc.models = [
                algorithms.PNN(std=np.std([
                    a for a in z_train.values.ravel()
                    if str(a) != 'nan' and a != 0
                ]),
                               verbose=False) for z_train in z_trains
            ]
        elif models == 'svm':
            sbc.models = [svm.SVC(kernel='rbf') for z_train in z_trains]
        elif models == 'lasso':
            sbc.models = [LassoLars() for z_train in z_trains]
        else:
            sbc.models = [
                copy.deepcopy(model_dict[model])
                if isinstance(model, str) else copy.deepcopy(model)
                for model in models
            ]
        sbc.features2 = [z_train.columns for z_train in z_trains]
        sbc.fit(z_trains, y_train)
        return sbc
예제 #28
0
    def test_simple_pnn(self):
        dataset = datasets.load_iris()
        data = dataset.data
        target = dataset.target

        test_data_size = 10
        skfold = StratifiedKFold(n_splits=test_data_size)
        avarage_result = 0

        for train, test in skfold.split(data, target):
            x_train, x_test = data[train], data[test]
            y_train, y_test = target[train], target[test]

            nw = algorithms.PNN(verbose=False, std=0.1)
            nw.train(x_train, y_train)
            result = nw.predict(x_test)
            avarage_result += sum(y_test == result)

        self.assertEqual(avarage_result / test_data_size, 14.4)
예제 #29
0
def diff_std():
    (x_train, y_train), (x_test, y_test) = dataset3.load_data(train_size=12000, show=True)
    titles = ["\n\nspread greater than necessary", "\n\nspread optimal", "\n\nspread less than necessary"]
    spreads = [0.1, 0.001, 0.0001]

    for spread, title in zip(spreads, titles):
        pnn = algorithms.PNN(std=spread, verbose=True)

        pnn.train(x_train, y_train)

        y_predicted = pnn.predict(x_test)

        mae = (np.abs(y_test - y_predicted)).mean()

        plt_x_zero = np.empty(0)
        plt_y_zero = np.empty(0)

        plt_x_one = np.empty(0)
        plt_y_one = np.empty(0)

        i = 0
        for coord in x_test:
            if y_predicted[i] < 0.5:
                plt_x_zero = np.append(plt_x_zero, coord[0])
                plt_y_zero = np.append(plt_y_zero, coord[1])
            elif y_predicted[i] >= 0.5:
                plt_x_one = np.append(plt_x_one, coord[0])
                plt_y_one = np.append(plt_y_one, coord[1])
            i += 1

        plt.plot(plt_x_zero, plt_y_zero, '.')
        plt.plot(plt_x_one, plt_y_one, '.')

        plt.title(title+'\n2 class classification\nstd = %.4f\nmae =%.4f' % (spread, mae))

        plt.xlim(0, 1.3)
        plt.ylim(0, 1)

        plt.legend(('0 class', '1 class'), loc='upper right', shadow=True)

        plt.show()
        plt.close()
예제 #30
0
def clasification():
    df = pd.DataFrame()
    for name, model, price in db.session.query(Products.product_name, Products.product_model, Recommendation.recommendation_price)\
            .join(Recommendation, Recommendation.recommendation_id == Products.recommendation_id):
        print(name, model, price)
        df = df.append({
            "name": name,
            "model": model,
            "price": float(price)
        },
                       ignore_index=True)
    # db.session.close()

    mean_p = df['price'].mean()
    df.loc[df['price'] < mean_p, 'quality'] = 0
    df.loc[df['price'] >= mean_p, 'quality'] = 1

    X = pd.get_dummies(data=df[['name', 'model']])
    print(df)
    print(X)
    pnn = algorithms.PNN(std=10, verbose=False)
    pnn.train(X, df['quality'])
    test_str = ['BMW', 'X5']
    count_columns = len(X.columns)
    test_list = [0] * count_columns
    test_list[1] = 1
    test_list[-1] = 1
    print(test_list)
    y_predicted = pnn.predict([test_list])
    result = "Ні"
    if y_predicted - 1 < 0.0000001:
        result = "Так"

    return render_template('clasification.html',
                           y_predicted=result,
                           test_data=test_list,
                           test_str=test_str)