예제 #1
0
파일: nn_runner.py 프로젝트: vmr2117/nnet
def test(args):
    [theta, bias] = pickle.load(open(args.model_file))
    nnet = FFNeuralNetwork()
    nnet.set_activation_func(args.actv)
    nnet.set_output_func('softmax')
    nnet.initialize(theta, bias)
    data = pickle.load(open(args.test_file))
    print 'Error :',nnet.test(data['X'], data['Y'])
예제 #2
0
파일: nn_runner.py 프로젝트: vmr2117/nnet
def train(args):
    tr_data = pickle.load(open(args.train_file))
    vd_data = pickle.load(open(args.validation_file))
    [theta, bias] = pickle.load(open(args.init_wt_file))
    
    perf_db = DatabaseAccessor(Perf, args.model_perf_db)
    perf_db.create_table()
    debug_db = DatabaseAccessor(Distribution, args.debug_db)
    debug_db.create_table()
    nnet = FFNeuralNetwork()
    nnet.set_activation_func(args.actv)
    nnet.set_output_func('softmax')
    nnet.initialize(theta, bias)
    if args.train_layers:
        nnet.set_train_layers(args.train_layers)
    nnet.set_perf_writer(perf_db)
    nnet.set_debug_writer(debug_db)
    btheta, bbias = nnet.train(tr_data['X'], tr_data['Y'], vd_data['X'],
            vd_data['Y'], args.mini_batch_size, args.epochs,
            args.validation_freq)
    pickle.dump([btheta,bbias], open(args.model_file, 'wb'))