def test_predict(self): model = SimpleModel().train() train_config = TrainConfig(model, [], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(train_config=train_config) self.assertFalse(model.fc.weight.is_cuda) self.assertTrue(model.training) res = dp.predict({'data': torch.rand(1, 3)}) self.assertFalse(model.training) self.assertFalse(res.requires_grad) self.assertIsNone(res.grad)
def test_train(self): model = SimpleModel().train() train_config = TrainConfig([], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(model=model, train_config=train_config) self.assertFalse(model.fc.weight.is_cuda) self.assertTrue(model.training) res = dp.predict({'data': torch.rand(1, 3)}, is_train=True) self.assertTrue(model.training) self.assertTrue(res.requires_grad) self.assertIsNone(res.grad) with self.assertRaises(NotImplementedError): dp.process_batch( { 'data': torch.rand(1, 3), 'target': torch.rand(1) }, is_train=True) loss = SimpleLoss() train_config = TrainConfig([], loss, torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(model=model, train_config=train_config) res = dp.process_batch( { 'data': torch.rand(1, 3), 'target': torch.rand(1) }, is_train=True) self.assertTrue(model.training) self.assertTrue(loss.module.requires_grad) self.assertIsNotNone(loss.module.grad) self.assertTrue(np.array_equal(res, loss.res.data.numpy()))
def test_initialisation(self): model = SimpleModel() train_config = TrainConfig(model, [], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1)) try: TrainDataProcessor(train_config=train_config) except: self.fail('DataProcessor initialisation raises exception')
def __init__(self, train_config: TrainConfig, fsm: FileStructManager, device: torch.device = None): self._fsm = fsm self.monitor_hub = MonitorHub() self._checkpoint_manager = CheckpointsManager(self._fsm) self.__epoch_num = 100 self._resume_from = None self._on_epoch_end = [] self._best_state_rule = None self._train_config = train_config self._data_processor = TrainDataProcessor(self._train_config, device).set_checkpoints_manager(self._checkpoint_manager) self._lr = LearningRate(self._data_processor.get_lr()) self._stop_rules = []
def test_prediction_output(self): model = SimpleModel() train_config = TrainConfig([], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(model=model, train_config=train_config) self.assertFalse(model.fc.weight.is_cuda) res = dp.predict({'data': torch.rand(1, 3)}, is_train=False) self.assertIs(type(res), torch.Tensor) model = NonStandardIOModel() dp = TrainDataProcessor(model=model, train_config=train_config) self.assertFalse(model.fc.weight.is_cuda) res = dp.predict( {'data': { 'data1': torch.rand(1, 3), 'data2': torch.rand(1, 3) }}, is_train=False) self.assertIs(type(res), dict) self.assertIn('res1', res) self.assertIs(type(res['res1']), torch.Tensor) self.assertIn('res2', res) self.assertIs(type(res['res2']), torch.Tensor)
class Trainer: """ Class, that run drive process. Trainer get list of training stages and every epoch loop over it. Training process looks like: .. highlight:: python .. code-block:: python for epoch in epochs_num: for stage in training_stages: stage.run() monitor_hub.update_metrics(stage.metrics_processor().get_metrics()) save_state() on_epoch_end_callback() :param model: model for training :param train_config: :class:`TrainConfig` object :param fsm: :class:`FileStructManager` object :param device: device for training process """ class TrainerException(Exception): def __init__(self, msg): super().__init__() self._msg = msg def __str__(self): return self._msg def __init__(self, model: Module, train_config: TrainConfig, fsm: FileStructManager, device: torch.device = None): self._fsm = fsm self.monitor_hub = MonitorHub() self._checkpoint_manager = CheckpointsManager(self._fsm) self.__epoch_num = 100 self._resume_from = None self._on_epoch_end = [] self._best_state_rule = None self.__train_config = train_config self._device = device self._data_processor = TrainDataProcessor(model, self.__train_config, self._device) \ .set_checkpoints_manager(self._checkpoint_manager) self._lr = LearningRate(self._data_processor.get_lr()) def set_epoch_num(self, epoch_number: int) -> 'Trainer': """ Define number of epoch for training. One epoch - one iteration over all train stages :param epoch_number: number of training epoch :return: self object """ self.__epoch_num = epoch_number return self def resume(self, from_best_checkpoint: bool) -> 'Trainer': """ Resume train from last checkpoint :param from_best_checkpoint: is need to continue from best checkpoint :return: self object """ self._resume_from = 'last' if from_best_checkpoint is False else 'best' return self def enable_lr_decaying(self, coeff: float, patience: int, target_val_clbk: callable) -> 'Trainer': """ Enable rearing rate decaying. Learning rate decay when `target_val_clbk` returns doesn't update minimum for `patience` steps :param coeff: lr decay coefficient :param patience: number of steps :param target_val_clbk: callback which returns the value that is used for lr decaying :return: self object """ self._lr = DecayingLR(self._data_processor.get_lr(), coeff, patience, target_val_clbk) return self def train(self) -> None: """ Run training process """ if len(self.__train_config.stages()) < 1: raise self.TrainerException("There's no sages for training") best_checkpoints_manager = None cur_best_state = None if self._best_state_rule is not None: best_checkpoints_manager = CheckpointsManager(self._fsm, 'best') start_epoch_idx = 1 if self._resume_from is not None: start_epoch_idx += self._resume() self.monitor_hub.add_monitor(ConsoleMonitor()) with self.monitor_hub: for epoch_idx in range(start_epoch_idx, self.__epoch_num + start_epoch_idx): self.monitor_hub.set_epoch_num(epoch_idx) for stage in self.__train_config.stages(): stage.run(self._data_processor) if stage.metrics_processor() is not None: self.monitor_hub.update_metrics( stage.metrics_processor().get_metrics()) new_best_state = self._save_state(self._checkpoint_manager, best_checkpoints_manager, cur_best_state, epoch_idx) if new_best_state is not None: cur_best_state = new_best_state self._data_processor.update_lr(self._lr.value()) for clbk in self._on_epoch_end: clbk() self._update_losses() self.__iterate_by_stages(lambda s: s.on_epoch_end()) def _resume(self) -> int: if self._resume_from == 'last': ckpts_manager = self._checkpoint_manager elif self._checkpoint_manager == 'best': ckpts_manager = CheckpointsManager(self._fsm, 'best') else: raise NotImplementedError( "Resume parameter may be only 'last' or 'best' not {}".format( self._resume_from)) ckpts_manager.unpack() self._data_processor.load() with open(ckpts_manager.trainer_file(), 'r') as file: start_epoch_idx = json.load(file)['last_epoch'] + 1 ckpts_manager.pack() return start_epoch_idx def _save_state(self, ckpts_manager: CheckpointsManager, best_ckpts_manager: CheckpointsManager or None, cur_best_state: float or None, epoch_idx: int) -> float or None: """ Internal method used for save states after epoch end :param ckpts_manager: ordinal checkpoints manager :param best_ckpts_manager: checkpoints manager, used for store best stages :param cur_best_state: current best stage metric value :return: new best stage metric value or None if it not update """ def save_trainer(ckp_manager): with open(ckp_manager.trainer_file(), 'w') as out: json.dump({'last_epoch': epoch_idx}, out) if self._best_state_rule is not None: new_best_state = self._best_state_rule() if cur_best_state is None: self._data_processor.save_state() save_trainer(ckpts_manager) ckpts_manager.pack() return new_best_state else: if new_best_state <= cur_best_state: self._data_processor.set_checkpoints_manager( best_ckpts_manager) self._data_processor.save_state() save_trainer(best_ckpts_manager) best_ckpts_manager.pack() self._data_processor.set_checkpoints_manager(ckpts_manager) return new_best_state self._data_processor.save_state() save_trainer(ckpts_manager) ckpts_manager.pack() return None def _update_losses(self) -> None: """ Update loses procedure """ losses = {} for stage in self.__train_config.stages(): if stage.get_losses() is not None: losses[stage.name()] = stage.get_losses() self.monitor_hub.update_losses(losses) def data_processor(self) -> TrainDataProcessor: """ Get data processor object :return: data processor """ return self._data_processor def enable_best_states_saving(self, rule: callable) -> 'Trainer': """ Enable best states saving Best stages will save when return of `rule` update minimum :param rule: callback which returns the value that is used for define when need store best metric :return: self object """ self._best_state_rule = rule return self def disable_best_states_saving(self) -> 'Trainer': """ Enable best states saving :return: self object """ self._best_state_rule = None return self def add_on_epoch_end_callback(self, callback: callable) -> 'Trainer': """ Add callback, that will be called after every epoch end :param callback: method, that will be called. This method may not get any parameters :return: self object """ self._on_epoch_end.append(callback) return self def __iterate_by_stages(self, func: callable) -> None: """ Internal method, that used for iterate by stages :param func: callback, that calls for every stage """ for stage in self.__train_config.stages(): func(stage)
def test_continue_from_checkpoint(self): def on_node(n1, n2): self.assertTrue(np.array_equal(n1.numpy(), n2.numpy())) model = SimpleModel().train() loss = SimpleLoss() for optim in [ torch.optim.SGD(model.parameters(), lr=0.1), torch.optim.Adam(model.parameters(), lr=0.1) ]: train_config = TrainConfig([], loss, optim) dp_before = TrainDataProcessor(model=model, train_config=train_config) before_state_dict = model.state_dict().copy() dp_before.update_lr(0.023) with self.assertRaises(Model.ModelException): dp_before.save_state() try: fsm = FileStructManager(base_dir=self.base_dir, is_continue=False) dp_before.set_checkpoints_manager(CheckpointsManager(fsm)) dp_before.save_state() except: self.fail( "Exception on saving state when 'CheckpointsManager' specified" ) fsm = FileStructManager(base_dir=self.base_dir, is_continue=True) dp_after = TrainDataProcessor(model=model, train_config=train_config) with self.assertRaises(Model.ModelException): dp_after.load() try: cm = CheckpointsManager(fsm) dp_after.set_checkpoints_manager(cm) dp_after.load() except: self.fail('DataProcessor initialisation raises exception') after_state_dict = model.state_dict().copy() dict_pair_recursive_bypass(before_state_dict, after_state_dict, on_node) self.assertEqual(dp_before.get_lr(), dp_after.get_lr()) shutil.rmtree(self.base_dir)