예제 #1
0
def main(args):

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    args_init = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k not in ['resume', 'local_rank']:
                setattr(args, k, v)

    args = compute_subsampling_factor(args)
    resume_epoch = int(args.resume.split('-')[-1]) if args.resume else 0

    # Load dataset
    train_set = build_dataloader(args=args,
                                 tsv_path=args.train_set,
                                 tsv_path_sub1=args.train_set_sub1,
                                 tsv_path_sub2=args.train_set_sub2,
                                 batch_size=args.batch_size,
                                 batch_size_type=args.batch_size_type,
                                 max_n_frames=args.max_n_frames,
                                 resume_epoch=resume_epoch,
                                 sort_by=args.sort_by,
                                 short2long=args.sort_short2long,
                                 sort_stop_epoch=args.sort_stop_epoch,
                                 num_workers=args.workers,
                                 pin_memory=args.pin_memory,
                                 distributed=args.distributed,
                                 word_alignment_dir=args.train_word_alignment,
                                 ctc_alignment_dir=args.train_ctc_alignment)
    dev_set = build_dataloader(
        args=args,
        tsv_path=args.dev_set,
        tsv_path_sub1=args.dev_set_sub1,
        tsv_path_sub2=args.dev_set_sub2,
        batch_size=1 if 'transducer' in args.dec_type else args.batch_size,
        batch_size_type='seq'
        if 'transducer' in args.dec_type else args.batch_size_type,
        max_n_frames=1600,
        word_alignment_dir=args.dev_word_alignment,
        ctc_alignment_dir=args.dev_ctc_alignment)
    eval_sets = [
        build_dataloader(args=args, tsv_path=s, batch_size=1, is_test=True)
        for s in args.eval_sets
    ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Set save path
    if args.resume:
        args.save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(args.save_path)
    else:
        dir_name = set_asr_model_name(args)
        if args.mbr_training:
            assert args.asr_init
            args.save_path = mkdir_join(os.path.dirname(args.asr_init),
                                        dir_name)
        else:
            args.save_path = mkdir_join(
                args.model_save_dir,
                '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
                dir_name)
        if args.local_rank > 0:
            time.sleep(1)
        args.save_path = set_save_path(args.save_path)  # avoid overwriting

    # Set logger
    set_logger(os.path.join(args.save_path, 'train.log'), args.stdout,
               args.local_rank)

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and args.external_lm:
        lm_conf = load_config(
            os.path.join(os.path.dirname(args.external_lm), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Model setting
    model = Speech2Text(args, args.save_path, train_set.idx2token[0])

    if not args.resume:
        # Save nlsyms, dictionary, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(args.save_path,
                                                  'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if args.get('dict' + sub):
                shutil.copy(
                    args.get('dict' + sub),
                    os.path.join(args.save_path, 'dict' + sub + '.txt'))
            if args.get('unit' + sub) == 'wp':
                shutil.copy(
                    args.get('wp_model' + sub),
                    os.path.join(args.save_path, 'wp' + sub + '.model'))

        for k, v in sorted(args.items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info('torch version: %s' % str(torch.__version__))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.asr_init:
            # Load ASR model (full model)
            conf_init = load_config(
                os.path.join(os.path.dirname(args.asr_init), 'conf.yml'))
            for k, v in conf_init.items():
                setattr(args_init, k, v)
            model_init = Speech2Text(args_init)
            load_checkpoint(args.asr_init, model_init)

            # Overwrite parameters
            param_dict = dict(model_init.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if args.asr_init_enc_only and 'enc' not in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

    # Set optimizer
    optimizer = set_optimizer(
        model,
        'sgd' if resume_epoch > args.convert_to_sgd_epoch else args.optimizer,
        args.lr, args.weight_decay)

    # Wrap optimizer by learning rate scheduler
    is_transformer = 'former' in args.enc_type or 'former' in args.dec_type or 'former' in args.dec_type_sub1
    scheduler = LRScheduler(
        optimizer,
        args.lr,
        decay_type=args.lr_decay_type,
        decay_start_epoch=args.lr_decay_start_epoch,
        decay_rate=args.lr_decay_rate,
        decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
        early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
        lower_better=args.metric not in ['accuracy', 'bleu'],
        warmup_start_lr=args.warmup_start_lr,
        warmup_n_steps=args.warmup_n_steps,
        peak_lr=0.05 / (args.get('transformer_enc_d_model', 0)**0.5)
        if 'conformer' in args.enc_type else 1e6,
        model_size=args.get('transformer_enc_d_model',
                            args.get('transformer_dec_d_model', 0)),
        factor=args.lr_factor,
        noam=args.optimizer == 'noam',
        save_checkpoints_topk=10 if is_transformer else 1)

    if args.resume:
        # Restore the last saved model
        load_checkpoint(args.resume, model, scheduler)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if resume_epoch == args.convert_to_sgd_epoch:
            scheduler.convert_to_sgd(model,
                                     args.lr,
                                     args.weight_decay,
                                     decay_type='always',
                                     decay_rate=0.5)

    # Load teacher ASR model
    teacher = None
    if args.teacher:
        assert os.path.isfile(args.teacher), 'There is no checkpoint.'
        conf_teacher = load_config(
            os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        load_checkpoint(args.teacher, teacher)

    # Load teacher LM
    teacher_lm = None
    if args.teacher_lm:
        assert os.path.isfile(args.teacher_lm), 'There is no checkpoint.'
        conf_lm = load_config(
            os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
        args_lm = argparse.Namespace()
        for k, v in conf_lm.items():
            setattr(args_lm, k, v)
        teacher_lm = build_lm(args_lm)
        load_checkpoint(args.teacher_lm, teacher_lm)

    # GPU setting
    args.use_apex = args.train_dtype in ["O0", "O1", "O2", "O3"]
    amp, scaler = None, None
    if args.n_gpus >= 1:
        model.cudnn_setting(
            deterministic=((not is_transformer) and (not args.cudnn_benchmark))
            or args.cudnn_deterministic,
            benchmark=(not is_transformer) and args.cudnn_benchmark)

        # Mixed precision training setting
        if args.use_apex:
            if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
                scaler = torch.cuda.amp.GradScaler()
            else:
                from apex import amp
                model, scheduler.optimizer = amp.initialize(
                    model, scheduler.optimizer, opt_level=args.train_dtype)
                from neural_sp.models.seq2seq.decoders.ctc import CTC
                amp.register_float_function(CTC, "loss_fn")
                # NOTE: see https://github.com/espnet/espnet/pull/1779
                amp.init()
                if args.resume:
                    load_checkpoint(args.resume, amp=amp)

        n = torch.cuda.device_count() // args.local_world_size
        device_ids = list(range(args.local_rank * n,
                                (args.local_rank + 1) * n))

        torch.cuda.set_device(device_ids[0])
        model.cuda(device_ids[0])
        scheduler.cuda(device_ids[0])
        if args.distributed:
            model = DDP(model, device_ids=device_ids)
        else:
            model = CustomDataParallel(model,
                                       device_ids=list(range(args.n_gpus)))

        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()
    else:
        model = CPUWrapperASR(model)

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    logger.info('#GPU: %d' % torch.cuda.device_count())
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(args, model, args.local_rank)
    args.wandb_id = reporter.wandb_id
    if args.resume:
        n_steps = scheduler.n_steps * max(
            1, args.accum_grad_n_steps // args.local_world_size)
        reporter.resume(n_steps, resume_epoch)

    # Save conf file as a yaml file
    if args.local_rank == 0:
        save_config(args, os.path.join(args.save_path, 'conf.yml'))
        if args.external_lm:
            save_config(args.lm_conf,
                        os.path.join(args.save_path, 'conf_lm.yml'))
        # NOTE: save after reporter for wandb ID

    # Define tasks
    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if args.total_weight - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.mbr_ce_weight > 0:
            tasks = ['ys.mbr'] + tasks
        for sub in ['sub1', 'sub2']:
            if args.get('train_set_' + sub) is not None:
                if args.get(sub + '_weight', 0) - args.get(
                        'ctc_weight_' + sub, 0) > 0:
                    tasks = ['ys_' + sub] + tasks
                if args.get('ctc_weight_' + sub, 0) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    if args.get('ss_start_epoch', 0) <= resume_epoch:
        model.module.trigger_scheduled_sampling()
    if args.get('mocha_quantity_loss_start_epoch', 0) <= resume_epoch:
        model.module.trigger_quantity_loss()

    start_time_train = time.time()
    for ep in range(resume_epoch, args.n_epochs):
        train_one_epoch(model, train_set, dev_set, eval_sets, scheduler,
                        reporter, logger, args, amp, scaler, tasks, teacher,
                        teacher_lm)

        # Save checkpoint and validate model per epoch
        if reporter.n_epochs + 1 < args.eval_start_epoch:
            scheduler.epoch()  # lr decay
            reporter.epoch()  # plot

            # Save model
            if args.local_rank == 0:
                scheduler.save_checkpoint(model,
                                          args.save_path,
                                          amp=amp,
                                          remove_old=(not is_transformer)
                                          and args.remove_old_checkpoints)
        else:
            start_time_eval = time.time()
            # dev
            metric_dev = validate([model.module], dev_set, args,
                                  reporter.n_epochs + 1, logger)
            scheduler.epoch(metric_dev)  # lr decay
            reporter.epoch(metric_dev, name=args.metric)  # plot
            reporter.add_scalar('dev/' + args.metric, metric_dev)

            if scheduler.is_topk or is_transformer:
                # Save model
                if args.local_rank == 0:
                    scheduler.save_checkpoint(model,
                                              args.save_path,
                                              amp=amp,
                                              remove_old=(not is_transformer)
                                              and args.remove_old_checkpoints)

                # test
                if scheduler.is_topk:
                    for eval_set in eval_sets:
                        validate([model.module], eval_set, args,
                                 reporter.n_epochs, logger)

            logger.info('Evaluation time: %.2f min' %
                        ((time.time() - start_time_eval) / 60))

            # Early stopping
            if scheduler.is_early_stop:
                break

            # Convert to fine-tuning stage
            if reporter.n_epochs == args.convert_to_sgd_epoch:
                scheduler.convert_to_sgd(model,
                                         args.lr,
                                         args.weight_decay,
                                         decay_type='always',
                                         decay_rate=0.5)

        if reporter.n_epochs >= args.n_epochs:
            break
        if args.get('ss_start_epoch', 0) == (ep + 1):
            model.module.trigger_scheduled_sampling()
        if args.get('mocha_quantity_loss_start_epoch', 0) == (ep + 1):
            model.module.trigger_quantity_loss()

    logger.info('Total time: %.2f hour' %
                ((time.time() - start_time_train) / 3600))
    reporter.close()

    return args.save_path
예제 #2
0
def main():

    args = parse_args_train(sys.argv[1:])
    args_init = copy.deepcopy(args)
    args_teacher = copy.deepcopy(args)

    # Load a conf file
    if args.resume:
        conf = load_config(
            os.path.join(os.path.dirname(args.resume), 'conf.yml'))
        for k, v in conf.items():
            if k != 'resume':
                setattr(args, k, v)
    recog_params = vars(args)

    args = compute_subsampling_factor(args)

    # for multi-GPUs
    if args.n_gpus > 1:
        batch_size = args.batch_size * args.n_gpus
        accum_grad_n_steps = max(1, args.accum_grad_n_steps // args.n_gpus)
    else:
        batch_size = args.batch_size
        accum_grad_n_steps = args.accum_grad_n_steps

    # Load dataloader
    train_set = build_dataloader(args=args,
                                 tsv_path=args.train_set,
                                 tsv_path_sub1=args.train_set_sub1,
                                 tsv_path_sub2=args.train_set_sub2,
                                 batch_size=batch_size,
                                 n_epochs=args.n_epochs,
                                 sort_by='input',
                                 short2long=args.sort_short2long,
                                 sort_stop_epoch=args.sort_stop_epoch,
                                 num_workers=args.n_gpus,
                                 pin_memory=True,
                                 word_alignment_dir=args.train_word_alignment,
                                 ctc_alignment_dir=args.train_ctc_alignment)
    dev_set = build_dataloader(args=args,
                               tsv_path=args.dev_set,
                               tsv_path_sub1=args.dev_set_sub1,
                               tsv_path_sub2=args.dev_set_sub2,
                               batch_size=batch_size,
                               num_workers=args.n_gpus,
                               pin_memory=True,
                               word_alignment_dir=args.dev_word_alignment,
                               ctc_alignment_dir=args.dev_ctc_alignment)
    eval_sets = [
        build_dataloader(args=args, tsv_path=s, batch_size=1, is_test=True)
        for s in args.eval_sets
    ]

    args.vocab = train_set.vocab
    args.vocab_sub1 = train_set.vocab_sub1
    args.vocab_sub2 = train_set.vocab_sub2
    args.input_dim = train_set.input_dim

    # Set save path
    if args.resume:
        save_path = os.path.dirname(args.resume)
        dir_name = os.path.basename(save_path)
    else:
        dir_name = set_asr_model_name(args)
        if args.mbr_training:
            assert args.asr_init
            save_path = mkdir_join(os.path.dirname(args.asr_init), dir_name)
        else:
            save_path = mkdir_join(
                args.model_save_dir,
                '_'.join(os.path.basename(args.train_set).split('.')[:-1]),
                dir_name)
        save_path = set_save_path(save_path)  # avoid overwriting

    # Set logger
    set_logger(os.path.join(save_path, 'train.log'), stdout=args.stdout)

    # Load a LM conf file for LM fusion & LM initialization
    if not args.resume and args.external_lm:
        lm_conf = load_config(
            os.path.join(os.path.dirname(args.external_lm), 'conf.yml'))
        args.lm_conf = argparse.Namespace()
        for k, v in lm_conf.items():
            setattr(args.lm_conf, k, v)
        assert args.unit == args.lm_conf.unit
        assert args.vocab == args.lm_conf.vocab

    # Model setting
    model = Speech2Text(args, save_path, train_set.idx2token[0])

    if not args.resume:
        # Save the conf file as a yaml file
        save_config(vars(args), os.path.join(save_path, 'conf.yml'))
        if args.external_lm:
            save_config(args.lm_conf, os.path.join(save_path, 'conf_lm.yml'))

        # Save the nlsyms, dictionary, and wp_model
        if args.nlsyms:
            shutil.copy(args.nlsyms, os.path.join(save_path, 'nlsyms.txt'))
        for sub in ['', '_sub1', '_sub2']:
            if getattr(args, 'dict' + sub):
                shutil.copy(getattr(args, 'dict' + sub),
                            os.path.join(save_path, 'dict' + sub + '.txt'))
            if getattr(args, 'unit' + sub) == 'wp':
                shutil.copy(getattr(args, 'wp_model' + sub),
                            os.path.join(save_path, 'wp' + sub + '.model'))

        for k, v in sorted(vars(args).items(), key=lambda x: x[0]):
            logger.info('%s: %s' % (k, str(v)))

        # Count total parameters
        for n in sorted(list(model.num_params_dict.keys())):
            n_params = model.num_params_dict[n]
            logger.info("%s %d" % (n, n_params))
        logger.info("Total %.2f M parameters" %
                    (model.total_parameters / 1000000))
        logger.info('torch version: %s' % str(torch.__version__))
        logger.info(model)

        # Initialize with pre-trained model's parameters
        if args.asr_init:
            # Load the ASR model (full model)
            conf_init = load_config(
                os.path.join(os.path.dirname(args.asr_init), 'conf.yml'))
            for k, v in conf_init.items():
                setattr(args_init, k, v)
            model_init = Speech2Text(args_init)
            load_checkpoint(args.asr_init, model_init)

            # Overwrite parameters
            param_dict = dict(model_init.named_parameters())
            for n, p in model.named_parameters():
                if n in param_dict.keys() and p.size() == param_dict[n].size():
                    if args.asr_init_enc_only and 'enc' not in n:
                        continue
                    p.data = param_dict[n].data
                    logger.info('Overwrite %s' % n)

    # Set optimizer
    if args.resume:
        resume_epoch = int(args.resume.split('-')[-1])
        optimizer = set_optimizer(
            model, 'sgd' if resume_epoch > args.convert_to_sgd_epoch else
            args.optimizer, args.lr, args.weight_decay)
    else:
        resume_epoch = 0
        optimizer = set_optimizer(model, args.optimizer, args.lr,
                                  args.weight_decay)

    # Wrap optimizer by learning rate scheduler
    is_transformer = 'former' in args.enc_type or 'former' in args.dec_type
    scheduler = LRScheduler(
        optimizer,
        args.lr,
        decay_type=args.lr_decay_type,
        decay_start_epoch=args.lr_decay_start_epoch,
        decay_rate=args.lr_decay_rate,
        decay_patient_n_epochs=args.lr_decay_patient_n_epochs,
        early_stop_patient_n_epochs=args.early_stop_patient_n_epochs,
        lower_better=args.metric not in ['accuracy', 'bleu'],
        warmup_start_lr=args.warmup_start_lr,
        warmup_n_steps=args.warmup_n_steps,
        peak_lr=0.05 / (getattr(args, 'transformer_enc_d_model', 0)**0.5)
        if 'conformer' in args.enc_type else 1e6,
        model_size=getattr(args, 'transformer_enc_d_model',
                           getattr(args, 'transformer_dec_d_model', 0)),
        factor=args.lr_factor,
        noam=args.optimizer == 'noam',
        save_checkpoints_topk=10 if is_transformer else 1)

    if args.resume:
        # Restore the last saved model
        load_checkpoint(args.resume, model, scheduler)

        # Resume between convert_to_sgd_epoch -1 and convert_to_sgd_epoch
        if resume_epoch == args.convert_to_sgd_epoch:
            scheduler.convert_to_sgd(model,
                                     args.lr,
                                     args.weight_decay,
                                     decay_type='always',
                                     decay_rate=0.5)

    # Load the teacher ASR model
    teacher = None
    if args.teacher:
        assert os.path.isfile(args.teacher), 'There is no checkpoint.'
        conf_teacher = load_config(
            os.path.join(os.path.dirname(args.teacher), 'conf.yml'))
        for k, v in conf_teacher.items():
            setattr(args_teacher, k, v)
        # Setting for knowledge distillation
        args_teacher.ss_prob = 0
        args.lsm_prob = 0
        teacher = Speech2Text(args_teacher)
        load_checkpoint(args.teacher, teacher)

    # Load the teacher LM
    teacher_lm = None
    if args.teacher_lm:
        assert os.path.isfile(args.teacher_lm), 'There is no checkpoint.'
        conf_lm = load_config(
            os.path.join(os.path.dirname(args.teacher_lm), 'conf.yml'))
        args_lm = argparse.Namespace()
        for k, v in conf_lm.items():
            setattr(args_lm, k, v)
        teacher_lm = build_lm(args_lm)
        load_checkpoint(args.teacher_lm, teacher_lm)

    # GPU setting
    use_apex = args.train_dtype in ["O0", "O1", "O2", "O3"]
    amp = None
    if args.n_gpus >= 1:
        model.cudnn_setting(
            deterministic=not (is_transformer or args.cudnn_benchmark),
            benchmark=not is_transformer and args.cudnn_benchmark)
        model.cuda()

        # Mixed precision training setting
        if use_apex:
            from apex import amp
            model, scheduler.optimizer = amp.initialize(
                model, scheduler.optimizer, opt_level=args.train_dtype)
            from neural_sp.models.seq2seq.decoders.ctc import CTC
            amp.register_float_function(CTC, "loss_fn")
            # NOTE: see https://github.com/espnet/espnet/pull/1779
            amp.init()
            if args.resume:
                load_checkpoint(args.resume, amp=amp)
        model = CustomDataParallel(model,
                                   device_ids=list(range(0, args.n_gpus)))

        if teacher is not None:
            teacher.cuda()
        if teacher_lm is not None:
            teacher_lm.cuda()
    else:
        model = CPUWrapperASR(model)

    # Set process name
    logger.info('PID: %s' % os.getpid())
    logger.info('USERNAME: %s' % os.uname()[1])
    logger.info('#GPU: %d' % torch.cuda.device_count())
    setproctitle(args.job_name if args.job_name else dir_name)

    # Set reporter
    reporter = Reporter(save_path)

    if args.mtl_per_batch:
        # NOTE: from easier to harder tasks
        tasks = []
        if 1 - args.bwd_weight - args.ctc_weight - args.sub1_weight - args.sub2_weight > 0:
            tasks += ['ys']
        if args.bwd_weight > 0:
            tasks = ['ys.bwd'] + tasks
        if args.ctc_weight > 0:
            tasks = ['ys.ctc'] + tasks
        if args.mbr_ce_weight > 0:
            tasks = ['ys.mbr'] + tasks
        for sub in ['sub1', 'sub2']:
            if getattr(args, 'train_set_' + sub):
                if getattr(args, sub + '_weight') - getattr(
                        args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub] + tasks
                if getattr(args, 'ctc_weight_' + sub) > 0:
                    tasks = ['ys_' + sub + '.ctc'] + tasks
    else:
        tasks = ['all']

    if getattr(args, 'ss_start_epoch', 0) <= resume_epoch:
        model.module.trigger_scheduled_sampling()
    if getattr(args, 'mocha_quantity_loss_start_epoch', 0) <= resume_epoch:
        model.module.trigger_quantity_loss()

    start_time_train = time.time()
    start_time_epoch = time.time()
    start_time_step = time.time()
    accum_n_steps = 0
    n_steps = scheduler.n_steps * accum_grad_n_steps
    epoch_detail_prev = 0
    for ep in range(resume_epoch, args.n_epochs):
        pbar_epoch = tqdm(total=len(train_set))
        session_prev = None

        for batch_train, is_new_epoch in train_set:
            # Compute loss in the training set
            if args.discourse_aware and batch_train['sessions'][
                    0] != session_prev:
                model.module.reset_session()
            session_prev = batch_train['sessions'][0]
            accum_n_steps += 1

            # Change mini-batch depending on task
            if accum_n_steps == 1:
                loss_train = 0  # average over gradient accumulation
            for task in tasks:
                loss, observation = model(batch_train,
                                          task=task,
                                          teacher=teacher,
                                          teacher_lm=teacher_lm)
                loss = loss / accum_grad_n_steps
                reporter.add(observation)
                if use_apex:
                    with amp.scale_loss(loss,
                                        scheduler.optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
                loss.detach()  # Truncate the graph
                if accum_n_steps >= accum_grad_n_steps or is_new_epoch:
                    if args.clip_grad_norm > 0:
                        total_norm = torch.nn.utils.clip_grad_norm_(
                            model.module.parameters(), args.clip_grad_norm)
                        reporter.add_tensorboard_scalar(
                            'total_norm', total_norm)
                    scheduler.step()
                    scheduler.zero_grad()
                    accum_n_steps = 0
                    # NOTE: parameters are forcibly updated at the end of every epoch
                loss_train += loss.item()
                del loss

            pbar_epoch.update(len(batch_train['utt_ids']))
            reporter.add_tensorboard_scalar('learning_rate', scheduler.lr)
            # NOTE: loss/acc/ppl are already added in the model
            reporter.step()
            n_steps += 1
            # NOTE: n_steps is different from the step counter in Noam Optimizer

            if n_steps % args.print_step == 0:
                # Compute loss in the dev set
                batch_dev = iter(dev_set).next(
                    batch_size=1 if 'transducer' in args.dec_type else None)[0]
                # Change mini-batch depending on task
                for task in tasks:
                    loss, observation = model(batch_dev,
                                              task=task,
                                              is_eval=True)
                    reporter.add(observation, is_eval=True)
                    loss_dev = loss.item()
                    del loss
                reporter.step(is_eval=True)

                duration_step = time.time() - start_time_step
                if args.input_type == 'speech':
                    xlen = max(len(x) for x in batch_train['xs'])
                    ylen = max(len(y) for y in batch_train['ys'])
                elif args.input_type == 'text':
                    xlen = max(len(x) for x in batch_train['ys'])
                    ylen = max(len(y) for y in batch_train['ys_sub1'])
                logger.info(
                    "step:%d(ep:%.2f) loss:%.3f(%.3f)/lr:%.7f/bs:%d/xlen:%d/ylen:%d (%.2f min)"
                    % (n_steps, scheduler.n_epochs + train_set.epoch_detail,
                       loss_train, loss_dev, scheduler.lr,
                       len(batch_train['utt_ids']), xlen, ylen,
                       duration_step / 60))
                start_time_step = time.time()

            # Save fugures of loss and accuracy
            if n_steps % (args.print_step * 10) == 0:
                reporter.snapshot()
                model.module.plot_attention()
                model.module.plot_ctc()

            # Ealuate model every 0.1 epoch during MBR training
            if args.mbr_training:
                if int(train_set.epoch_detail * 10) != int(
                        epoch_detail_prev * 10):
                    # dev
                    evaluate([model.module], dev_set, recog_params, args,
                             int(train_set.epoch_detail * 10) / 10, logger)
                    # Save the model
                    scheduler.save_checkpoint(
                        model,
                        save_path,
                        remove_old=False,
                        amp=amp,
                        epoch_detail=train_set.epoch_detail)
                epoch_detail_prev = train_set.epoch_detail

            if is_new_epoch:
                break

        # Save checkpoint and evaluate model per epoch
        duration_epoch = time.time() - start_time_epoch
        logger.info('========== EPOCH:%d (%.2f min) ==========' %
                    (scheduler.n_epochs + 1, duration_epoch / 60))

        if scheduler.n_epochs + 1 < args.eval_start_epoch:
            scheduler.epoch()  # lr decay
            reporter.epoch()  # plot

            # Save the model
            scheduler.save_checkpoint(model,
                                      save_path,
                                      remove_old=not is_transformer
                                      and args.remove_old_checkpoints,
                                      amp=amp)
        else:
            start_time_eval = time.time()
            # dev
            metric_dev = evaluate([model.module], dev_set, recog_params, args,
                                  scheduler.n_epochs + 1, logger)
            scheduler.epoch(metric_dev)  # lr decay
            reporter.epoch(metric_dev, name=args.metric)  # plot

            if scheduler.is_topk or is_transformer:
                # Save the model
                scheduler.save_checkpoint(model,
                                          save_path,
                                          remove_old=not is_transformer
                                          and args.remove_old_checkpoints,
                                          amp=amp)

                # test
                if scheduler.is_topk:
                    for eval_set in eval_sets:
                        evaluate([model.module], eval_set, recog_params, args,
                                 scheduler.n_epochs, logger)

            duration_eval = time.time() - start_time_eval
            logger.info('Evaluation time: %.2f min' % (duration_eval / 60))

            # Early stopping
            if scheduler.is_early_stop:
                break

            # Convert to fine-tuning stage
            if scheduler.n_epochs == args.convert_to_sgd_epoch:
                scheduler.convert_to_sgd(model,
                                         args.lr,
                                         args.weight_decay,
                                         decay_type='always',
                                         decay_rate=0.5)

        if scheduler.n_epochs >= args.n_epochs:
            break
        if getattr(args, 'ss_start_epoch', 0) == (ep + 1):
            model.module.trigger_scheduled_sampling()
        if getattr(args, 'mocha_quantity_loss_start_epoch', 0) == (ep + 1):
            model.module.trigger_quantity_loss()

        start_time_step = time.time()
        start_time_epoch = time.time()

    duration_train = time.time() - start_time_train
    logger.info('Total time: %.2f hour' % (duration_train / 3600))

    reporter.tf_writer.close()
    pbar_epoch.close()

    return save_path
예제 #3
0
def main():

    # Load configuration
    args, recog_params, dir_name = parse_args_eval(sys.argv[1:])
    args = compute_subsampling_factor(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'),
               stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataloader
        dataloader = build_dataloader(args=args,
                                      tsv_path=s,
                                      batch_size=1,
                                      is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(args.recog_model[0].split('-')[-1])
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            # Ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    load_checkpoint(recog_model_e, model_e)
                    if args.recog_n_gpus >= 1:
                        model_e.cuda()
                    ensemble_models += [model_e]

            # Load the LM for shallow fusion
            if not args.lm_fusion:
                # first path
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    lm = build_lm(args_lm)
                    load_checkpoint(args.recog_lm, lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm
                # NOTE: only support for first path

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('length norm: %s' % args.recog_length_norm)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('fist LM path: %s' % args.recog_lm)
            logger.info('LM weight: %.3f' % args.recog_lm_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('model average (Transformer): %d' %
                        (args.recog_n_average))

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'att_weights')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataloader.next(
                recog_params['recog_batch_size'])
            nbest_hyps_id, aws = model.decode(
                batch['xs'],
                recog_params,
                dataloader.idx2token[0],
                exclude_eos=False,
                refs_id=batch['ys'],
                ensemble_models=ensemble_models[1:]
                if len(ensemble_models) > 1 else [],
                speakers=batch['sessions']
                if dataloader.corpus == 'swbd' else batch['speakers'])
            best_hyps_id = [h[0] for h in nbest_hyps_id]

            # Get CTC probs
            ctc_probs, topk_ids = None, None
            if args.ctc_weight > 0:
                ctc_probs, topk_ids, xlens = model.get_ctc_probs(
                    batch['xs'],
                    task='ys',
                    temperature=1,
                    topk=min(100, model.vocab))
                # NOTE: ctc_probs: '[B, T, topk]'
            ctc_probs_sub1, topk_ids_sub1 = None, None
            if args.ctc_weight_sub1 > 0:
                ctc_probs_sub1, topk_ids_sub1, xlens_sub1 = model.get_ctc_probs(
                    batch['xs'],
                    task='ys_sub1',
                    temperature=1,
                    topk=min(100, model.vocab_sub1))

            if model.bwd_weight > 0.5:
                # Reverse the order
                best_hyps_id = [hyp[::-1] for hyp in best_hyps_id]
                aws = [[aw[0][:, ::-1]] for aw in aws]

            for b in range(len(batch['xs'])):
                tokens = dataloader.idx2token[0](best_hyps_id[b],
                                                 return_list=True)
                spk = batch['speakers'][b]

                plot_attention_weights(
                    aws[b][0][:, :len(tokens)],
                    tokens,
                    spectrogram=batch['xs'][b][:, :dataloader.input_dim]
                    if args.input_type == 'speech' else None,
                    factor=args.subsample_factor,
                    ref=batch['text'][b].lower(),
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8),
                    ctc_probs=ctc_probs[b, :xlens[b]]
                    if ctc_probs is not None else None,
                    ctc_topk_ids=topk_ids[b] if topk_ids is not None else None,
                    ctc_probs_sub1=ctc_probs_sub1[b, :xlens_sub1[b]]
                    if ctc_probs_sub1 is not None else None,
                    ctc_topk_ids_sub1=topk_ids_sub1[b]
                    if topk_ids_sub1 is not None else None)

                if model.bwd_weight > 0.5:
                    hyp = ' '.join(tokens[::-1])
                else:
                    hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
예제 #4
0
def main():

    # Load configuration
    args, recog_params, dir_name = parse_args_eval(sys.argv[1:])
    args = compute_subsampling_factor(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'plot.log')):
        os.remove(os.path.join(args.recog_dir, 'plot.log'))
    set_logger(os.path.join(args.recog_dir, 'plot.log'),
               stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Load dataloader
        dataloader = build_dataloader(args=args,
                                      tsv_path=s,
                                      batch_size=1,
                                      is_test=True)

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(args.recog_model[0].split('-')[-1])
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model,
                                            args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'ctc_probs')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        while True:
            batch, is_new_epoch = dataloader.next(
                recog_params['recog_batch_size'])
            nbest_hyps_id, _ = model.decode(batch['xs'], recog_params,
                                            dataloader.idx2token[0])
            best_hyps_id = [h[0] for h in nbest_hyps_id]

            # Get CTC probs
            ctc_probs, topk_ids, xlens = model.get_ctc_probs(batch['xs'],
                                                             temperature=1,
                                                             topk=min(
                                                                 100,
                                                                 model.vocab))
            # NOTE: ctc_probs: '[B, T, topk]'

            for b in range(len(batch['xs'])):
                tokens = dataloader.idx2token[0](best_hyps_id[b],
                                                 return_list=True)
                spk = batch['speakers'][b]

                plot_ctc_probs(
                    ctc_probs[b, :xlens[b]],
                    topk_ids[b],
                    factor=args.subsample_factor,
                    spectrogram=batch['xs'][b][:, :dataloader.input_dim],
                    save_path=mkdir_join(save_path, spk,
                                         batch['utt_ids'][b] + '.png'),
                    figsize=(20, 8))

                hyp = ' '.join(tokens)
                logger.info('utt-id: %s' % batch['utt_ids'][b])
                logger.info('Ref: %s' % batch['text'][b].lower())
                logger.info('Hyp: %s' % hyp)
                logger.info('-' * 50)

            if is_new_epoch:
                break
예제 #5
0
파일: eval.py 프로젝트: qwjaskzxl/neural_sp
def main():

    # Load configuration
    args, recog_params, dir_name = parse_args_eval(sys.argv[1:])
    args = compute_subsampling_factor(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'decode.log')):
        os.remove(os.path.join(args.recog_dir, 'decode.log'))
    set_logger(os.path.join(args.recog_dir, 'decode.log'),
               stdout=args.recog_stdout)

    wer_avg, cer_avg, per_avg = 0, 0, 0
    ppl_avg, loss_avg = 0, 0
    acc_avg = 0
    bleu_avg = 0
    for i, s in enumerate(args.recog_sets):
        # Load dataloader
        dataloader = build_dataloader(
            args=args,
            tsv_path=s,
            batch_size=1,
            is_test=True,
            first_n_utterances=args.recog_first_n_utt)

        if i == 0:
            # Load ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(float(args.recog_model[0].split('-')[-1]) * 10) / 10
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                # topk_list = load_checkpoint(args.recog_model[0], model)
                model = average_checkpoints(
                    model,
                    args.recog_model[0],
                    # topk_list=topk_list,
                    n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            # Ensemble (different models)
            ensemble_models = [model]
            if len(args.recog_model) > 1:
                for recog_model_e in args.recog_model[1:]:
                    conf_e = load_config(
                        os.path.join(os.path.dirname(recog_model_e),
                                     'conf.yml'))
                    args_e = copy.deepcopy(args)
                    for k, v in conf_e.items():
                        if 'recog' not in k:
                            setattr(args_e, k, v)
                    model_e = Speech2Text(args_e)
                    load_checkpoint(recog_model_e, model_e)
                    if args.recog_n_gpus >= 1:
                        model_e.cuda()
                    ensemble_models += [model_e]

            # Load LM for shallow fusion
            if not args.lm_fusion:
                # first path
                if args.recog_lm is not None and args.recog_lm_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm),
                                     'conf.yml'))
                    args_lm = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm, k, v)
                    args_lm.recog_mem_len = args.recog_mem_len
                    lm = build_lm(args_lm,
                                  wordlm=args.recog_wordlm,
                                  lm_dict_path=os.path.join(
                                      os.path.dirname(args.recog_lm),
                                      'dict.txt'),
                                  asr_dict_path=os.path.join(
                                      dir_name, 'dict.txt'))
                    load_checkpoint(args.recog_lm, lm)
                    if args_lm.backward:
                        model.lm_bwd = lm
                    else:
                        model.lm_fwd = lm

                # second path (forward)
                if args.recog_lm_second is not None and args.recog_lm_second_weight > 0:
                    conf_lm_second = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_second),
                                     'conf.yml'))
                    args_lm_second = argparse.Namespace()
                    for k, v in conf_lm_second.items():
                        setattr(args_lm_second, k, v)
                    args_lm_second.recog_mem_len = args.recog_mem_len
                    lm_second = build_lm(args_lm_second)
                    load_checkpoint(args.recog_lm_second, lm_second)
                    model.lm_second = lm_second

                # second path (backward)
                if args.recog_lm_bwd is not None and args.recog_lm_bwd_weight > 0:
                    conf_lm = load_config(
                        os.path.join(os.path.dirname(args.recog_lm_bwd),
                                     'conf.yml'))
                    args_lm_bwd = argparse.Namespace()
                    for k, v in conf_lm.items():
                        setattr(args_lm_bwd, k, v)
                    args_lm_bwd.recog_mem_len = args.recog_mem_len
                    lm_bwd = build_lm(args_lm_bwd)
                    load_checkpoint(args.recog_lm_bwd, lm_bwd)
                    model.lm_bwd = lm_bwd

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('recog metric: %s' % args.recog_metric)
            logger.info('recog oracle: %s' % args.recog_oracle)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)
            logger.info('beam width: %d' % args.recog_beam_width)
            logger.info('min length ratio: %.3f' % args.recog_min_len_ratio)
            logger.info('max length ratio: %.3f' % args.recog_max_len_ratio)
            logger.info('length penalty: %.3f' % args.recog_length_penalty)
            logger.info('length norm: %s' % args.recog_length_norm)
            logger.info('coverage penalty: %.3f' % args.recog_coverage_penalty)
            logger.info('coverage threshold: %.3f' %
                        args.recog_coverage_threshold)
            logger.info('CTC weight: %.3f' % args.recog_ctc_weight)
            logger.info('fist LM path: %s' % args.recog_lm)
            logger.info('second LM path: %s' % args.recog_lm_second)
            logger.info('backward LM path: %s' % args.recog_lm_bwd)
            logger.info('LM weight (first-pass): %.3f' % args.recog_lm_weight)
            logger.info('LM weight (second-pass): %.3f' %
                        args.recog_lm_second_weight)
            logger.info('LM weight (backward): %.3f' %
                        args.recog_lm_bwd_weight)
            logger.info('GNMT: %s' % args.recog_gnmt_decoding)
            logger.info('forward-backward attention: %s' %
                        args.recog_fwd_bwd_attention)
            logger.info('resolving UNK: %s' % args.recog_resolving_unk)
            logger.info('ensemble: %d' % (len(ensemble_models)))
            logger.info('ASR decoder state carry over: %s' %
                        (args.recog_asr_state_carry_over))
            logger.info('LM state carry over: %s' %
                        (args.recog_lm_state_carry_over))
            logger.info('model average (Transformer): %d' %
                        (args.recog_n_average))

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        start_time = time.time()

        if args.recog_metric == 'edit_distance':
            if args.recog_unit in ['word', 'word_char']:
                wer, cer, _ = eval_word(ensemble_models,
                                        dataloader,
                                        recog_params,
                                        epoch=epoch - 1,
                                        recog_dir=args.recog_dir,
                                        progressbar=True,
                                        fine_grained=True,
                                        oracle=True)
                wer_avg += wer
                cer_avg += cer
            elif args.recog_unit == 'wp':
                wer, cer = eval_wordpiece(ensemble_models,
                                          dataloader,
                                          recog_params,
                                          epoch=epoch - 1,
                                          recog_dir=args.recog_dir,
                                          streaming=args.recog_streaming,
                                          progressbar=True,
                                          fine_grained=True,
                                          oracle=True)
                wer_avg += wer
                cer_avg += cer
            elif 'char' in args.recog_unit:
                wer, cer = eval_char(ensemble_models,
                                     dataloader,
                                     recog_params,
                                     epoch=epoch - 1,
                                     recog_dir=args.recog_dir,
                                     progressbar=True,
                                     task_idx=0,
                                     fine_grained=True,
                                     oracle=True)
                #  task_idx=1 if args.recog_unit and 'char' in args.recog_unit else 0)
                wer_avg += wer
                cer_avg += cer
            elif 'phone' in args.recog_unit:
                per = eval_phone(ensemble_models,
                                 dataloader,
                                 recog_params,
                                 epoch=epoch - 1,
                                 recog_dir=args.recog_dir,
                                 progressbar=True,
                                 fine_grained=True,
                                 oracle=True)
                per_avg += per
            else:
                raise ValueError(args.recog_unit)
        elif args.recog_metric in ['ppl', 'loss']:
            ppl, loss = eval_ppl(ensemble_models, dataloader, progressbar=True)
            ppl_avg += ppl
            loss_avg += loss
        elif args.recog_metric == 'accuracy':
            acc_avg += eval_accuracy(ensemble_models,
                                     dataloader,
                                     progressbar=True)
        elif args.recog_metric == 'bleu':
            bleu = eval_wordpiece_bleu(ensemble_models,
                                       dataloader,
                                       recog_params,
                                       epoch=epoch - 1,
                                       recog_dir=args.recog_dir,
                                       streaming=args.recog_streaming,
                                       progressbar=True,
                                       fine_grained=True,
                                       oracle=True)
            bleu_avg += bleu
        else:
            raise NotImplementedError(args.recog_metric)
        elapsed_time = time.time() - start_time
        logger.info('Elapsed time: %.3f [sec]' % elapsed_time)
        logger.info('RTF: %.3f' % (elapsed_time /
                                   (dataloader.n_frames * 0.01)))

    if args.recog_metric == 'edit_distance':
        if 'phone' in args.recog_unit:
            logger.info('PER (avg.): %.2f %%\n' %
                        (per_avg / len(args.recog_sets)))
        else:
            logger.info('WER / CER (avg.): %.2f / %.2f %%\n' %
                        (wer_avg / len(args.recog_sets),
                         cer_avg / len(args.recog_sets)))
    elif args.recog_metric in ['ppl', 'loss']:
        logger.info('PPL (avg.): %.2f\n' % (ppl_avg / len(args.recog_sets)))
        print('PPL (avg.): %.3f' % (ppl_avg / len(args.recog_sets)))
        logger.info('Loss (avg.): %.2f\n' % (loss_avg / len(args.recog_sets)))
        print('Loss (avg.): %.3f' % (loss_avg / len(args.recog_sets)))
    elif args.recog_metric == 'accuracy':
        logger.info('Accuracy (avg.): %.2f\n' %
                    (acc_avg / len(args.recog_sets)))
        print('Accuracy (avg.): %.3f' % (acc_avg / len(args.recog_sets)))
    elif args.recog_metric == 'bleu':
        logger.info('BLEU (avg.): %.2f\n' % (bleu / len(args.recog_sets)))
        print('BLEU (avg.): %.3f' % (bleu / len(args.recog_sets)))
예제 #6
0
def main():

    # Load configuration
    args, recog_params, dir_name = parse_args_eval(sys.argv[1:])
    args = compute_subsampling_factor(args)

    # Setting for logging
    if os.path.isfile(os.path.join(args.recog_dir, 'align.log')):
        os.remove(os.path.join(args.recog_dir, 'align.log'))
    set_logger(os.path.join(args.recog_dir, 'align.log'), stdout=args.recog_stdout)

    for i, s in enumerate(args.recog_sets):
        # Align all utterances
        args.min_n_frames = 0
        args.max_n_frames = 1e5

        # Load dataloader
        dataloader = build_dataloader(args=args,
                                      tsv_path=s,
                                      batch_size=recog_params['recog_batch_size'])

        if i == 0:
            # Load the ASR model
            model = Speech2Text(args, dir_name)
            epoch = int(args.recog_model[0].split('-')[-1])
            if args.recog_n_average > 1:
                # Model averaging for Transformer
                model = average_checkpoints(model, args.recog_model[0],
                                            n_average=args.recog_n_average)
            else:
                load_checkpoint(args.recog_model[0], model)

            if not args.recog_unit:
                args.recog_unit = args.unit

            logger.info('recog unit: %s' % args.recog_unit)
            logger.info('epoch: %d' % epoch)
            logger.info('batch size: %d' % args.recog_batch_size)

            # GPU setting
            if args.recog_n_gpus >= 1:
                model.cudnn_setting(deterministic=True, benchmark=False)
                model.cuda()

        save_path = mkdir_join(args.recog_dir, 'ctc_forced_alignments')

        # Clean directory
        if save_path is not None and os.path.isdir(save_path):
            shutil.rmtree(save_path)
            os.mkdir(save_path)

        pbar = tqdm(total=len(dataloader))
        while True:
            batch, is_new_epoch = dataloader.next()
            trigger_points = model.ctc_forced_align(batch['xs'], batch['ys'])  # `[B, L]`

            for b in range(len(batch['xs'])):
                save_path_spk = mkdir_join(save_path, batch['speakers'][b])
                save_path_utt = mkdir_join(save_path_spk, batch['utt_ids'][b] + '.txt')

                tokens = dataloader.idx2token[0](batch['ys'][b], return_list=True)
                with codecs.open(save_path_utt, 'w', encoding="utf-8") as f:
                    for i, tok in enumerate(tokens):
                        f.write('%s %d\n' % (tok, trigger_points[b, i]))
                    f.write('%s %d\n' % ('<eos>', trigger_points[b, len(tokens)]))

            pbar.update(len(batch['xs']))

            if is_new_epoch:
                break

        pbar.close()