def dense_residual_block(self, model_layer, name): with tf.name_scope('dense_residual_block') as scope: last_layer = self.last_layer if 'function' in model_layer: activation = model_layer['function'] else: activation = 'relu' # original residual unit shape = self.network[last_layer].get_output_shape() num_units = shape[-1].value self.network[name + '_1resid'] = layers.DenseLayer( self.network[last_layer], num_units=num_units, b=None, **self.seed) self.network[name + '_1resid_norm'] = layers.BatchNormLayer( self.network[name + '_1resid'], self.placeholders['is_training']) self.network[name + '_1resid_active'] = layers.ActivationLayer( self.network[name + '_1resid_norm'], function=activation) if 'dropout_block' in model_layer: placeholder_name = 'keep_prob_' + str(self.num_dropout) self.placeholders[placeholder_name] = tf.placeholder( tf.float32, name=placeholder_name) self.feed_dict[ placeholder_name] = 1 - model_layer['dropout_block'] self.num_dropout += 1 self.network[name + '_dropout1'] = layers.DropoutLayer( self.network[name + '_1resid_active'], keep_prob=self.placeholders[placeholder_name]) lastname = name + '_dropout1' else: lastname = name + '_1resid_active' self.network[name + '_2resid'] = layers.DenseLayer( self.network[lastname], num_units=num_units, b=None, **self.seed) self.network[name + '_2resid_norm'] = layers.BatchNormLayer( self.network[name + '_2resid'], self.placeholders['is_training']) self.network[name + '_resid_sum'] = layers.ElementwiseSumLayer([ self.network[last_layer], self.network[name + '_2resid_norm'] ]) self.network[name + '_resid'] = layers.ActivationLayer( self.network[name + '_resid_sum'], function=activation) self.last_layer = name + '_resid'
def conv2d_residual_block(self, model_layer, name): last_layer = self.last_layer filter_size = model_layer['filter_size'] if 'function' in model_layer: activation = model_layer['function'] else: activation = 'relu' # original residual unit shape = self.network[last_layer].get_output_shape() num_filters = shape[-1].value if not isinstance(filter_size, (list, tuple)): filter_size = (filter_size, filter_size) if 'W' not in model_layer.keys(): W = init.HeUniform(**self.seed) else: W = model_layer['W'] self.network[name+'_1resid'] = layers.Conv2DLayer(self.network[last_layer], num_filters=num_filters, filter_size=filter_size, W=W, padding='SAME') self.network[name+'_1resid_norm'] = layers.BatchNormLayer(self.network[name+'_1resid'], self.placeholders['is_training']) self.network[name+'_1resid_active'] = layers.ActivationLayer(self.network[name+'_1resid_norm'], function=activation) if 'dropout_block' in model_layer: placeholder_name = 'keep_prob_'+str(self.num_dropout) self.placeholders[placeholder_name] = tf.placeholder(tf.float32, name=placeholder_name) self.feed_dict[placeholder_name] = 1-model_layer['dropout_block'] self.num_dropout += 1 self.network[name+'_dropout1'] = layers.DropoutLayer(self.network[name+'_1resid_active'], keep_prob=self.placeholders[placeholder_name]) lastname = name+'_dropout1' else: lastname = name+'_1resid_active' self.network[name+'_2resid'] = layers.Conv2DLayer(self.network[lastname], num_filters=num_filters, filter_size=filter_size, W=W, padding='SAME') self.network[name+'_2resid_norm'] = layers.BatchNormLayer(self.network[name+'_2resid'], self.placeholders['is_training']) self.network[name+'_resid_sum'] = layers.ElementwiseSumLayer([self.network[last_layer], self.network[name+'_2resid_norm']]) self.network[name+'_resid'] = layers.ActivationLayer(self.network[name+'_resid_sum'], function=activation) self.last_layer = name+'_resid'
def build_layers(self, model_layers, supervised=True, use_scope=False): self.network = OrderedDict() name_gen = NameGenerator() self.num_dropout = 0 self.num_inputs = 0 self.last_layer = '' # loop to build each layer of network for model_layer in model_layers: layer = model_layer['layer'] # name of layer if 'name' in model_layer: name = model_layer['name'] else: name = name_gen.generate_name(layer) if layer == "input": # add input layer self.single_layer(model_layer, name) else: if layer == 'conv1d_residual': self.conv1d_residual_block(model_layer, name) elif layer == 'conv2d_residual': self.conv2d_residual_block(model_layer, name) elif layer == 'dense_residual': self.dense_residual_block(model_layer, name) elif layer == 'variational': self.network['encode_mu'] = layers.DenseLayer(self.network[self.last_layer], num_units=model_layer['num_units'], **self.seed) self.network['encode_logsigma'] = layers.DenseLayer(self.network[self.last_layer], num_units=model_layer['num_units'], **self.seed) self.network['Z'] = layers.VariationalSampleLayer(self.network['encode_mu'], self.network['encode_logsigma']) self.last_layer = 'Z' else: # add core layer self.single_layer(model_layer, name) # add Batch normalization layer if 'norm' in model_layer: if 'batch' in model_layer['norm']: new_layer = name + '_batch' #str(counter) + '_' + name + '_batch' self.network[new_layer] = layers.BatchNormLayer(self.network[self.last_layer], self.placeholders['is_training']) self.last_layer = new_layer else: if (model_layer['layer'] == 'dense') | (model_layer['layer'] == 'conv1d') | (model_layer['layer'] == 'conv2d'): if 'b' in model_layer: if model_layer['b'] != None: b = init.Constant(0.05) new_layer = name+'_bias' self.network[new_layer] = layers.BiasLayer(self.network[self.last_layer], b=b) self.last_layer = new_layer elif 'norm' not in model_layer: b = init.Constant(0.05) new_layer = name+'_bias' self.network[new_layer] = layers.BiasLayer(self.network[self.last_layer], b=b) self.last_layer = new_layer else: if 'b' in model_layer: if model_layer['b'] != None: b = init.Constant(0.05) new_layer = name+'_bias' self.network[new_layer] = layers.BiasLayer(self.network[self.last_layer], b=b) self.last_layer = new_layer # add activation layer if 'activation' in model_layer: new_layer = name+'_active' self.network[new_layer] = layers.ActivationLayer(self.network[self.last_layer], function=model_layer['activation']) self.last_layer = new_layer # add max-pooling layer ### Modified this from the older pool_size if 'max_pool' in model_layer: new_layer = name+'_maxpool' # str(counter) + '_' + name+'_pool' if len(self.network[self.last_layer].output_shape) == 4: if isinstance(model_layer['max_pool'], (tuple, list)): self.network[new_layer] = layers.MaxPool2DLayer(self.network[self.last_layer], pool_size=model_layer['max_pool']) else: self.network[new_layer] = layers.MaxPool2DLayer(self.network[self.last_layer], pool_size=(model_layer['max_pool'], 1)) self.last_layer = new_layer # add mean-pooling layer elif 'mean_pool' in model_layer: new_layer = name+'_meanpool' # str(counter) + '_' + name+'_pool' if isinstance(model_layer['mean_pool'], (tuple, list)): self.network[new_layer] = layers.MeanPool2DLayer(self.network[self.last_layer], pool_size=model_layer['mean_pool'], name=name+'_meanpool') else: self.network[new_layer] = layers.MeanPool1DLayer(self.network[self.last_layer], pool_size=model_layer['mean_pool'], name=name+'_meanpool') self.last_layer = new_layer # add global-pooling layer elif 'global_pool' in model_layer: print('global_pool') new_layer = name+'_globalpool' self.network[new_layer] = layers.GlobalPoolLayer(self.network[self.last_layer], func=model_layer['global_pool'], name=name+'_globalpool') self.last_layer = new_layer # add dropout layer if 'dropout' in model_layer: new_layer = name+'_dropout' # str(counter) + '_' + name+'_dropout' placeholder_name = 'keep_prob_'+str(self.num_dropout) self.placeholders[placeholder_name] = tf.placeholder(tf.float32, name=placeholder_name) self.feed_dict[placeholder_name] = 1-model_layer['dropout'] self.num_dropout += 1 self.network[new_layer] = layers.DropoutLayer(self.network[self.last_layer], keep_prob=self.placeholders[placeholder_name]) self.last_layer = new_layer if supervised: self.network['output'] = self.network.pop(self.last_layer) shape = self.network['output'].get_output_shape() targets = utils.placeholder(shape=shape, name='output') self.placeholders['targets'] = targets self.feed_dict['targets'] = [] else: self.network['X'] = self.network.pop(self.last_layer) self.placeholders['targets'] = self.placeholders['inputs'][0] self.feed_dict['targets'] = [] self.feed_dict['KL_weight'] = 1.0 self.placeholders['KL_weight'] = tf.placeholder(tf.float32) return self.network, self.placeholders, self.feed_dict
def build_layers(self, model_layers, supervised=True): self.network = OrderedDict() name_gen = NameGenerator() self.num_dropout = 0 self.num_inputs = 0 self.last_layer = '' # loop to build each layer of network for model_layer in model_layers: layer = model_layer['layer'] # name of layer if 'name' in model_layer: name = model_layer['name'] else: name = name_gen.generate_name(layer) # set scope for each layer with tf.name_scope(name) as scope: if layer == "input": # add input layer self.single_layer(model_layer, name) elif layer == 'embedding': vocab_size = model_layer['vocab_size'] embedding_size = model_layer['embedding_size'] if 'max_norm' in model_layer: max_norm = model_layer['max_norm'] else: max_norm = None self.network[name] = layers.EmbeddingLayer( self.network[self.last_layer], vocab_size, embedding_size, max_norm) self.last_layer = name elif (layer == 'variational') | (layer == 'variational_normal'): if 'name' in model_layer: name = model_layer['name'] else: name = 'Z' self.network[name + '_mu'] = layers.DenseLayer( self.network[self.last_layer], num_units=model_layer['num_units'], b=init.GlorotUniform(), **self.seed) self.network[name + '_logvar'] = layers.DenseLayer( self.network[self.last_layer], num_units=model_layer['num_units'], b=init.GlorotUniform(), **self.seed) self.network[name + '_sample'] = layers.VariationalSampleLayer( self.network[name + '_mu'], self.network[name + '_logvar']) self.last_layer = name + '_sample' elif layer == 'variational_softmax': if 'hard' in model_layer: hard = model_layer['hard'] else: hard = False num_categories, num_classes = model_layer['shape'] if 'temperature' in model_layer: temperature = model_layer['temperature'] else: temperature = 5.0 self.feed_dict['temperature'] = temperature self.placeholders['temperature'] = tf.placeholder( dtype=tf.float32, name="temperature") if 'name' in model_layer: name = model_layer['name'] else: name = 'Z' self.network[name + '_logits'] = layers.DenseLayer( self.network[self.last_layer], num_units=num_categories * num_classes, b=init.GlorotUniform()) self.network[name + '_logits_reshape'] = layers.ReshapeLayer( self.network[name + '_logits'], shape=[-1, num_classes]) self.network[name] = layers.ActivationLayer( self.network[name + '_logits_reshape'], function='softmax') self.network[name + '_sample'] = layers.CategoricalSampleLayer( self.network[name + '_logits_reshape'], temperature=temperature, hard=hard) self.network[name + '_logits_reshape'] = layers.ReshapeLayer( self.network[name + '_logits'], shape=[-1, num_categories, num_classes]) self.network[name + '_softmax'] = layers.Softmax2DLayer( self.network[name + '_logits_reshape']) self.network[name + '_sample'] = layers.CategoricalSampleLayer( self.network[name + '_logits_reshape'], temperature=temperature, hard=hard) self.network[name] = layers.ReshapeLayer( self.network[name + '_softmax'], shape=[-1, num_categories * num_classes]) self.last_layer = name else: if layer == 'conv1d_residual': self.conv1d_residual_block(model_layer, name) elif layer == 'conv2d_residual': self.conv2d_residual_block(model_layer, name) elif layer == 'dense_residual': self.dense_residual_block(model_layer, name) else: # add core layer self.single_layer(model_layer, name) # add Batch normalization layer if 'norm' in model_layer: if 'batch' in model_layer['norm']: with tf.name_scope("norm") as scope: new_layer = name + '_batch' #str(counter) + '_' + name + '_batch' self.network[ new_layer] = layers.BatchNormLayer( self.network[self.last_layer], self.placeholders['is_training']) self.last_layer = new_layer else: if (model_layer['layer'] == 'dense') | ( model_layer['layer'] == 'conv1d') | ( model_layer['layer'] == 'conv2d'): if 'b' in model_layer: if model_layer['b'] != None: with tf.name_scope("bias") as scope: b = init.Constant(model_layer['b']) new_layer = name + '_bias' self.network[ new_layer] = layers.BiasLayer( self.network[self.last_layer], b=b) self.last_layer = new_layer elif 'norm' not in model_layer: with tf.name_scope("bias") as scope: b = init.GlorotUniform() new_layer = name + '_bias' self.network[new_layer] = layers.BiasLayer( self.network[self.last_layer], b=b) self.last_layer = new_layer # add activation layer if 'activation' in model_layer: new_layer = name + '_active' self.network[new_layer] = layers.ActivationLayer( self.network[self.last_layer], function=model_layer['activation'], name=scope) self.last_layer = new_layer # add max-pooling layer if 'max_pool' in model_layer: new_layer = name + '_maxpool' # str(counter) + '_' + name+'_pool' if isinstance(model_layer['max_pool'], (tuple, list)): self.network[new_layer] = layers.MaxPool2DLayer( self.network[self.last_layer], pool_size=model_layer['max_pool'], name=name + '_maxpool') else: self.network[new_layer] = layers.MaxPool1DLayer( self.network[self.last_layer], pool_size=model_layer['max_pool'], name=name + '_maxpool') self.last_layer = new_layer # add mean-pooling layer elif 'mean_pool' in model_layer: new_layer = name + '_meanpool' # str(counter) + '_' + name+'_pool' if isinstance(model_layer['mean_pool'], (tuple, list)): self.network[new_layer] = layers.MeanPool2DLayer( self.network[self.last_layer], pool_size=model_layer['mean_pool'], name=name + '_meanpool') else: self.network[new_layer] = layers.MeanPool1DLayer( self.network[self.last_layer], pool_size=model_layer['mean_pool'], name=name + '_meanpool') self.last_layer = new_layer # add global-pooling layer elif 'global_pool' in model_layer: new_layer = name + '_globalpool' self.network[new_layer] = layers.GlobalPoolLayer( self.network[self.last_layer], func=model_layer['global_pool'], name=name + '_globalpool') self.last_layer = new_layer # add dropout layer if 'dropout' in model_layer: new_layer = name + '_dropout' # str(counter) + '_' + name+'_dropout' placeholder_name = 'keep_prob_' + str(self.num_dropout) self.placeholders[placeholder_name] = tf.placeholder( tf.float32, name=placeholder_name) self.feed_dict[ placeholder_name] = 1 - model_layer['dropout'] self.num_dropout += 1 self.network[new_layer] = layers.DropoutLayer( self.network[self.last_layer], keep_prob=self.placeholders[placeholder_name], name=name + '_dropout') self.last_layer = new_layer if ('reshape' in model_layer) & (layer != 'reshape'): new_layer = name + '_reshape' self.network[new_layer] = layers.ReshapeLayer( self.network[self.last_layer], model_layer['reshape']) self.last_layer = new_layer if supervised: self.network['output'] = self.network.pop(self.last_layer) shape = self.network['output'].get_output_shape() targets = utils.placeholder(shape=shape, name='output') self.placeholders['targets'] = targets self.feed_dict['targets'] = [] else: self.network['X'] = self.network.pop(self.last_layer) self.placeholders['targets'] = self.placeholders['inputs'] self.feed_dict['targets'] = [] return self.network, self.placeholders, self.feed_dict