def run(root_experiment_name): activations = load_nilmtk_activations(appliances=APPLIANCES, filename=NILMTK_FILENAME, sample_period=SAMPLE_PERIOD, windows=WINDOWS) for get_net in [ae]: for target_appliance in ['kettle']: pipeline = get_pipeline(target_appliance, activations) # Build net batch = pipeline.get_batch() net = get_net(batch) # Trainer trainer = Trainer( net=net, data_pipeline=pipeline, experiment_id=[ root_experiment_name, get_net.__name__, target_appliance ], metrics=Metrics( state_boundaries=[2]), # was 3 up until 230000ish learning_rates={0: 1E-2}, repeat_callbacks=[(5000, Trainer.validate), (5000, Trainer.save_params), (5000, Trainer.plot_estimates)]) report = trainer.submit_report() print(report) # Run! trainer.fit(None)
def run(root_experiment_name): activations = load_nilmtk_activations( appliances=APPLIANCES, filename=NILMTK_FILENAME, sample_period=SAMPLE_PERIOD, windows=WINDOWS ) for get_net in [ae]: for target_appliance in APPLIANCES[2:]: print("Starting training for net {}, appliance {}." .format(get_net.__name__, target_appliance)) pipeline = get_pipeline(target_appliance, activations) # Build net batch = pipeline.get_batch() net = get_net(batch) # Trainer trainer = Trainer( net=net, data_pipeline=pipeline, experiment_id=[ root_experiment_name, get_net.__name__, target_appliance], metrics=Metrics(state_boundaries=[2.5]), learning_rates={ 0: 1e-2, 200000: 1e-3 }, repeat_callbacks=[ (25000, Trainer.validate), (25000, Trainer.save_params), (25000, Trainer.plot_estimates) ] ) report = trainer.submit_report() print(report) # Run! trainer.fit(300000)
def run(root_experiment_name): activations = load_nilmtk_activations(appliances=APPLIANCES, filename=NILMTK_FILENAME, sample_period=SAMPLE_PERIOD, windows=WINDOWS) for get_net in [ae]: for target_appliance in APPLIANCES[2:]: print("Starting training for net {}, appliance {}.".format( get_net.__name__, target_appliance)) pipeline = get_pipeline(target_appliance, activations) # Build net batch = pipeline.get_batch() net = get_net(batch) # Trainer trainer = Trainer(net=net, data_pipeline=pipeline, experiment_id=[ root_experiment_name, get_net.__name__, target_appliance ], metrics=Metrics(state_boundaries=[2.5]), learning_rates={ 0: 1e-2, 200000: 1e-3 }, repeat_callbacks=[(25000, Trainer.validate), (25000, Trainer.save_params), (25000, Trainer.plot_estimates) ]) report = trainer.submit_report() print(report) # Run! trainer.fit(300000)
def run(root_experiment_name): activations = load_nilmtk_activations( appliances=APPLIANCES, filename=NILMTK_FILENAME, sample_period=SAMPLE_PERIOD, windows=WINDOWS ) for get_net in [ae]: for target_appliance in ['kettle']: pipeline = get_pipeline(target_appliance, activations) # Build net batch = pipeline.get_batch() net = get_net(batch) # Trainer trainer = Trainer( net=net, data_pipeline=pipeline, experiment_id=[ root_experiment_name, get_net.__name__, target_appliance], metrics=Metrics(state_boundaries=[2]), # was 3 up until 230000ish learning_rates={0: 1E-2}, repeat_callbacks=[ (5000, Trainer.validate), (5000, Trainer.save_params), (5000, Trainer.plot_estimates) ] ) report = trainer.submit_report() print(report) # Run! trainer.fit(None)