def test_parallel_queued_pipeline_with_step_name_n_worker_max_queue_size(): p = ParallelQueuedFeatureUnion([('1', 1, 5, MultiplyByN(2)), ('2', 1, 5, MultiplyByN(2)), ('3', 1, 5, MultiplyByN(2)), ('4', 1, 5, MultiplyByN(2))], batch_size=10) outputs = p.transform(list(range(100))) assert np.array_equal(outputs, EXPECTED_OUTPUTS_PARALLEL)
def test_parallel_queued_pipeline_with_step_name_n_worker_additional_arguments(): n_workers = 4 worker_arguments = [('hyperparams', HyperparameterSamples({'multiply_by': 2})) for _ in range(n_workers)] p = ParallelQueuedFeatureUnion([ ('1', n_workers, worker_arguments, MultiplyByN()), ], batch_size=10, max_queue_size=5) outputs = p.transform(list(range(100))) expected = np.array(list(range(0, 200, 2))) assert np.array_equal(outputs, expected)
def test_queued_pipeline_with_savers(tmpdir): # Given p = ParallelQueuedFeatureUnion([ ('1', MultiplyByN(2)), ('2', MultiplyByN(2)), ('3', MultiplyByN(2)), ('4', MultiplyByN(2)), ], n_workers_per_step=1, max_queue_size=10, batch_size=10, use_savers=True, cache_folder=tmpdir) # When outputs = p.transform(list(range(100))) # Then assert np.array_equal(outputs, EXPECTED_OUTPUTS_PARALLEL)