예제 #1
0
def test_hyperparam_space():
    p = Pipeline([
        AddFeatures([
            SomeStep(hyperparams_space=HyperparameterSpace({"n_components": RandInt(1, 5)})),
            SomeStep(hyperparams_space=HyperparameterSpace({"n_components": RandInt(1, 5)}))
        ]),
        ModelStacking([
            SomeStep(hyperparams_space=HyperparameterSpace({"n_estimators": RandInt(1, 1000)})),
            SomeStep(hyperparams_space=HyperparameterSpace({"n_estimators": RandInt(1, 1000)})),
            SomeStep(hyperparams_space=HyperparameterSpace({"max_depth": RandInt(1, 100)})),
            SomeStep(hyperparams_space=HyperparameterSpace({"max_depth": RandInt(1, 100)}))
        ],
            joiner=NumpyTranspose(),
            judge=SomeStep(hyperparams_space=HyperparameterSpace({"alpha": LogUniform(0.1, 10.0)}))
        )
    ])

    rvsed = p.get_hyperparams_space()
    p.set_hyperparams(rvsed)

    hyperparams = p.get_hyperparams()

    assert "AddFeatures" in hyperparams.keys()
    assert "SomeStep" in hyperparams["AddFeatures"]
    assert "n_components" in hyperparams["AddFeatures"]["SomeStep"]
    assert "SomeStep1" in hyperparams["AddFeatures"]
    assert "n_components" in hyperparams["AddFeatures"]["SomeStep1"]
    assert "SomeStep" in hyperparams["ModelStacking"]
    assert "n_estimators" in hyperparams["ModelStacking"]["SomeStep"]
    assert "SomeStep1" in hyperparams["ModelStacking"]
    assert "max_depth" in hyperparams["ModelStacking"]["SomeStep2"]
예제 #2
0
def test_model_stacking_fit_transform():
    model_stacking = Pipeline([
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])
    expected_outputs_shape = (379, 1)
    data_inputs_shape = (379, 13)
    data_inputs = _create_data(data_inputs_shape)
    expected_outputs = _create_data(expected_outputs_shape)

    model_stacking, outputs = model_stacking.fit_transform(
        data_inputs, expected_outputs)

    assert outputs.shape == expected_outputs_shape
예제 #3
0
 def __init__(self, brothers):
     super().__init__(brothers,
                      SKLearnWrapper(
                          Ridge(),
                          HyperparameterSpace({
                              "alpha": LogUniform(0.1, 10.0),
                              "fit_intercept": Boolean()
                          })),
                      joiner=NumpyTranspose())
예제 #4
0
def test_feature_union_should_transform_with_numpy_transpose():
    p = Pipeline(
        [FeatureUnion([
            Identity(),
            Identity(),
        ], joiner=NumpyTranspose())])
    data_inputs = np.random.randint((1, 20))

    outputs = p.transform(data_inputs)

    assert np.array_equal(outputs,
                          np.array([data_inputs, data_inputs]).transpose())
예제 #5
0
def test_feature_union_should_fit_transform_with_numpy_transpose():
    p = Pipeline(
        [FeatureUnion([
            Identity(),
            Identity(),
        ], joiner=NumpyTranspose())])
    data_inputs = np.random.randint(low=0, high=100, size=(2, 20))
    expected_outputs = None

    p, outputs = p.fit_transform(data_inputs, expected_outputs)

    assert np.array_equal(outputs,
                          np.array([data_inputs, data_inputs]).transpose())
예제 #6
0
def test_hyperparam_space():
    p = Pipeline([
        AddFeatures([
            SomeStep(hyperparams_space=HyperparameterSpace(
                {"n_components": RandInt(1, 5)})),
            SomeStep(hyperparams_space=HyperparameterSpace(
                {"n_components": RandInt(1, 5)}))
        ]),
        ModelStacking([
            SomeStep(hyperparams_space=HyperparameterSpace(
                {"n_estimators": RandInt(1, 1000)})),
            SomeStep(hyperparams_space=HyperparameterSpace(
                {"n_estimators": RandInt(1, 1000)})),
            SomeStep(hyperparams_space=HyperparameterSpace(
                {"max_depth": RandInt(1, 100)})),
            SomeStep(hyperparams_space=HyperparameterSpace(
                {"max_depth": RandInt(1, 100)}))
        ],
                      joiner=NumpyTranspose(),
                      judge=SomeStep(hyperparams_space=HyperparameterSpace(
                          {"alpha": LogUniform(0.1, 10.0)})))
    ])

    rvsed = p.get_hyperparams_space()
    p.set_hyperparams(rvsed)

    hyperparams = p.get_hyperparams()
    flat_hyperparams_keys = hyperparams.to_flat_dict().keys()

    assert 'AddFeatures' in hyperparams
    assert 'SomeStep' in hyperparams["AddFeatures"]
    assert "n_components" in hyperparams["AddFeatures"]["SomeStep"]
    assert 'SomeStep1' in hyperparams["AddFeatures"]
    assert "n_components" in hyperparams["AddFeatures"]["SomeStep1"]

    assert 'ModelStacking' in hyperparams
    assert 'SomeStep' in hyperparams["ModelStacking"]
    assert 'n_estimators' in hyperparams["ModelStacking"]["SomeStep"]
    assert 'SomeStep1' in hyperparams["ModelStacking"]
    assert 'n_estimators' in hyperparams["ModelStacking"]["SomeStep1"]
    assert 'SomeStep2' in hyperparams["ModelStacking"]
    assert 'max_depth' in hyperparams["ModelStacking"]["SomeStep2"]
    assert 'SomeStep3' in hyperparams["ModelStacking"]
    assert 'max_depth' in hyperparams["ModelStacking"]["SomeStep3"]

    assert 'AddFeatures__SomeStep1__n_components' in flat_hyperparams_keys
    assert 'AddFeatures__SomeStep__n_components' in flat_hyperparams_keys
    assert 'ModelStacking__SomeStep__n_estimators' in flat_hyperparams_keys
    assert 'ModelStacking__SomeStep1__n_estimators' in flat_hyperparams_keys
    assert 'ModelStacking__SomeStep2__max_depth' in flat_hyperparams_keys
    assert 'ModelStacking__SomeStep3__max_depth' in flat_hyperparams_keys
예제 #7
0
def test_feature_union_should_apply_to_self_and_sub_steps():
    p = Pipeline(
        [FeatureUnion([
            Identity(),
            Identity(),
        ], joiner=NumpyTranspose())])

    p.apply(lambda step: step._set_hyperparams(
        HyperparameterSamples({'applied': True})))

    assert p.hyperparams['applied']
    assert p['FeatureUnion'].hyperparams['applied']
    assert p['FeatureUnion'][0].hyperparams['applied']
    assert p['FeatureUnion'][1].hyperparams['applied']
    assert p['FeatureUnion'][2].hyperparams['applied']
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600),
                    "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })),
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600),
                    "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })),
            SKLearnWrapper(
                KMeans(), HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
        ],
        joiner=NumpyTranspose(),
        judge=SKLearnWrapper(
            Ridge(),
            HyperparameterSpace({
                "alpha": LogUniform(0.7, 1.4),
                "fit_intercept": Boolean()
            })),
    )
])

print("Meta-fitting on train:")
p = p.meta_fit(X_train,
               y_train,
               metastep=RandomSearch(n_iter=10,
                                     higher_score_is_better=True,
                                     validation_technique=KFoldCrossValidation(
예제 #9
0
def main():
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.25,
                                                        shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
        ]),
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])
    print("Meta-fitting on train:")
    p = p.meta_fit(X_train,
                   y_train,
                   metastep=RandomSearch(
                       n_iter=10,
                       higher_score_is_better=True,
                       validation_technique=KFoldCrossValidationWrapper(
                           scoring_function=r2_score, k_fold=10)))
    # Here is an alternative way to do it, more "pipeliney":
    # p = RandomSearch(
    #     p,
    #     n_iter=15,
    #     higher_score_is_better=True,
    #     validation_technique=KFoldCrossValidation(scoring_function=r2_score, k_fold=3)
    # ).fit(X_train, y_train)

    print("")

    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)

    print("")

    print("Evaluating transformed train:")
    score_transform = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_transform)

    print("")

    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)
예제 #10
0
def main(tmpdir):
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
        ]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 300), "max_depth": RandInt(1, 4),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
            SKLearnWrapper(
                KMeans(),
                HyperparameterSpace({"n_clusters": RandInt(5, 10)})
            ),
        ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({"alpha": LogUniform(0.7, 1.4), "fit_intercept": Boolean()})
            ),
        )
    ])

    print("Meta-fitting on train:")
    auto_ml = AutoML(
        p,
        validation_splitter=ValidationSplitter(0.20),
        refit_trial=True,
        n_trials=10,
        epochs=1,  # 1 epoc here due to using sklearn models that just fit once.
        cache_folder_when_no_handle=str(tmpdir),
        scoring_callback=ScoringCallback(mean_squared_error, higher_score_is_better=False),
        callbacks=[MetricCallback('mse', metric_function=mean_squared_error, higher_score_is_better=False)],
        hyperparams_repository=InMemoryHyperparamsRepository(cache_folder=str(tmpdir))
    )

    random_search = auto_ml.fit(X_train, y_train)
    p = random_search.get_best_model()
    print("")

    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)

    print("")

    print("Evaluating transformed train:")
    score_transform = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_transform)

    print("")

    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)
예제 #11
0
def test_deep_learning_pipeline():
    # Given
    boston = load_boston()
    data_inputs, expected_outputs = shuffle(boston.data,
                                            boston.target,
                                            random_state=13)
    expected_outputs = expected_outputs.astype(np.float32)
    data_inputs = data_inputs.astype(np.float32)

    pipeline = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
        ]),
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(n_clusters=7),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])

    p = DeepLearningPipeline(
        pipeline,
        validation_size=VALIDATION_SIZE,
        batch_size=BATCH_SIZE,
        batch_metrics={'mse': to_numpy_metric_wrapper(mean_squared_error)},
        shuffle_in_each_epoch_at_train=True,
        n_epochs=N_EPOCHS,
        epochs_metrics={'mse': to_numpy_metric_wrapper(mean_squared_error)},
        scoring_function=to_numpy_metric_wrapper(mean_squared_error),
    )

    # When
    p, outputs = p.fit_transform(data_inputs, expected_outputs)

    # Then
    batch_mse_train = p.get_batch_metric_train('mse')
    epoch_mse_train = p.get_epoch_metric_train('mse')

    batch_mse_validation = p.get_batch_metric_validation('mse')
    epoch_mse_validation = p.get_epoch_metric_validation('mse')

    assert len(epoch_mse_train) == N_EPOCHS
    assert len(epoch_mse_validation) == N_EPOCHS

    expected_len_batch_mse_train = math.ceil(
        (len(data_inputs) / BATCH_SIZE) * (1 - VALIDATION_SIZE)) * N_EPOCHS
    expected_len_batch_mse_validation = math.ceil(
        (len(data_inputs) / BATCH_SIZE) * VALIDATION_SIZE) * N_EPOCHS

    assert len(batch_mse_train) == expected_len_batch_mse_train
    assert len(batch_mse_validation) == expected_len_batch_mse_validation

    last_batch_mse_validation = batch_mse_validation[-1]
    last_batch_mse_train = batch_mse_train[-1]

    last_epoch_mse_train = epoch_mse_train[-1]
    last_epoch_mse_validation = epoch_mse_validation[-1]

    assert last_batch_mse_train < last_batch_mse_validation
    assert last_epoch_mse_train < last_epoch_mse_validation
    assert last_batch_mse_train < 1
    assert last_epoch_mse_train < 1