예제 #1
0
def compute_wavelet_transform(sig, fs, freqs, n_cycles=7, scaling=0.5):
    """Compute the time-frequency representation of a signal using morlet wavelets.

    Parameters
    ----------
    sig : 1d array
        Time series.
    fs : float
        Sampling rate, in Hz.
    freqs : 1d array or list of float
        If array, frequency values to estimate with morlet wavelets.
        If list, define the frequency range, as [freq_start, freq_stop, freq_step].
        The `freq_step` is optional, and defaults to 1. Range is inclusive of `freq_stop` value.
    n_cycles : float
        Length of the filter, as the number of cycles for each frequency.
    scaling : float
        Scaling factor.

    Returns
    -------
    mwt : 2d array
        Time frequency representation of the input signal.
    """

    if isinstance(freqs, (tuple, list)):
        freqs = create_freqs(*freqs)
    n_cycles = check_n_cycles(n_cycles, len(freqs))

    mwt = np.zeros([len(sig), len(freqs)], dtype=complex)
    for ind, (freq, n_cycle) in enumerate(zip(freqs, n_cycles)):
        mwt[:, ind] = convolve_wavelet(sig, fs, freq, n_cycle, scaling)

    return mwt
예제 #2
0
def compute_lagged_coherence(sig, fs, freqs, n_cycles=3, return_spectrum=False):
    """Compute lagged coherence, reflecting the rhythmicity across a frequency range.

    Parameters
    ----------
    sig : 1d array
        Time series.
    fs : float
        Sampling rate, in Hz.
    freqs : 1d array or list of float
        If array, frequency values to estimate with morlet wavelets.
        If list, define the frequency range, as [freq_start, freq_stop, freq_step].
        The `freq_step` is optional, and defaults to 1. Range is inclusive of `freq_stop` value.
    n_cycles : float or list of float, default: 3
        Number of cycles of each frequency to use to compute lagged coherence.
        If a single value, the same number of cycles is used for each frequency value.
        If a list or list_like, then should be a n_cycles corresponding to each frequency.
    return_spectrum : bool, optional, default: False
        If True, return the lagged coherence for all frequency values.
        Otherwise, only the mean lagged coherence value across the frequency range is returned.

    Returns
    -------
    lcs : float or 1d array
        If `return_spectrum` is False: mean lagged coherence value across the frequency range.
        If `return_spectrum` is True: lagged coherence values for all frequencies.
    freqs : 1d array
        Frequencies, corresponding to the lagged coherence values, in Hz.
        Only returned if `return_spectrum` is True.

    References
    ----------
    .. [1] Fransen, A. M., van Ede, F., & Maris, E. (2015).
           Identifying neuronal oscillations using rhythmicity.
           Neuroimage, 118, 256-267. DOI: 10.1016/j.neuroimage.2015.06.003
    """

    if isinstance(freqs, (tuple, list)):
        freqs = create_freqs(*freqs)
    n_cycles = check_n_cycles(n_cycles, len(freqs))

    # Calculate lagged coherence for each frequency
    lcs = np.zeros(len(freqs))
    for ind, (freq, n_cycle) in enumerate(zip(freqs, n_cycles)):
        lcs[ind] = lagged_coherence_1freq(sig, fs, freq, n_cycles=n_cycle)

    # Check if all values were properly estimated
    if sum(np.isnan(lcs)) > 0:
        warn("NEURODSP - LAGGED COHERENCE WARNING:"
             "\nLagged coherence could not be estimated for at least some requested frequencies."
             "\nThis happens, especially with low frequencies, when there are not enough samples "
             "per segment and/or not enough segments available to estimate the measure."
             "\nTry using a greater number of cycles and/or a longer signal length, and/or "
             "adjust the frequency range.")

    if return_spectrum:
        return lcs, freqs
    else:
        return np.mean(lcs)
예제 #3
0
def compute_wavelet_transform(sig, fs, freqs, n_cycles=7, scaling=0.5):
    """Compute the time-frequency representation of a signal using morlet wavelets.

    Parameters
    ----------
    sig : 1d array
        Time series.
    fs : float
        Sampling rate, in Hz.
    freqs : 1d array or list of float
        If array, frequency values to estimate with morlet wavelets.
        If list, define the frequency range, as [freq_start, freq_stop, freq_step].
        The `freq_step` is optional, and defaults to 1. Range is inclusive of `freq_stop` value.
    n_cycles : float
        Length of the filter, as the number of cycles for each frequency.
    scaling : float
        Scaling factor.

    Returns
    -------
    mwt : 2d array
        Time frequency representation of the input signal.

    Examples
    --------
    Compute a Morlet wavelet time-frequency representation of a signal:

    >>> from neurodsp.sim import sim_combined
    >>> sig = sim_combined(n_seconds=10, fs=500,
    ...                    components={'sim_powerlaw': {}, 'sim_oscillation' : {'freq': 10}})
    >>> mwt = compute_wavelet_transform(sig, fs=500, freqs=[1, 30])
    """

    if isinstance(freqs, (tuple, list)):
        freqs = create_freqs(*freqs)
    n_cycles = check_n_cycles(n_cycles, len(freqs))

    mwt = np.zeros([len(sig), len(freqs)], dtype=complex)
    for ind, (freq, n_cycle) in enumerate(zip(freqs, n_cycles)):
        mwt[:, ind] = convolve_wavelet(sig, fs, freq, n_cycle, scaling)

    return mwt