예제 #1
0
def read_neighbors(comm, filepath, iosize, node_ranks):
    def neighbors_default():
        return {'src': array('L'), 'dst': array('L')}

    neighbors_dict = defaultdict(neighbors_default)

    (graph, _) = scatter_read_graph(filepath,
                                    io_size=iosize,
                                    map_type=0,
                                    node_rank_map=node_ranks,
                                    comm=comm)

    ## determine neighbors of vertex based on incoming edges
    for post, prj in graph.items():
        for pre, edge_iter in prj.items():
            for (n, edges) in edge_iter:
                neighbors_dict[n]['src'].extend(edges[0])

    ## obtain outgoing edges
    (graph, _) = scatter_read_graph(filepath,
                                    io_size=iosize,
                                    map_type=1,
                                    node_rank_map=node_ranks,
                                    comm=comm)

    ## determine neighbors of vertex based on outgoing edges
    for pre, prj in graph.items():
        for post, edge_iter in prj.items():
            for (n, edges) in edge_iter:
                neighbors_dict[n]['dst'].extend(edges[0])

    return neighbors_dict
예제 #2
0
from mpi4py import MPI
from neuroh5.io import scatter_read_graph

comm = MPI.COMM_WORLD
#print "rank = ", comm.Get_rank()
#print "size = ", comm.Get_size()

(g, a) = scatter_read_graph("data/dentate_test.h5")
print(g)

#xprint a
#print g
예제 #3
0
def connectcells(env, gid_list):
    datasetPath = os.path.join(env.datasetPrefix, env.datasetName)
    connectivityFilePath = os.path.join(datasetPath, env.modelConfig['Connection Data'])
    forestFilePath = os.path.join(datasetPath, env.modelConfig['Cell Data'])

    if env.verbose:
        if env.pc.id() == 0:
            print '*** Connectivity file path is %s' % connectivityFilePath

    prj_dict = defaultdict(list)
    for (src, dst) in read_projection_names(env.comm, connectivityFilePath):
        prj_dict[dst].append(src)

    if env.verbose:
        if env.pc.id() == 0:
            print '*** Reading projections: ', prj_dict.items()

    for (postsyn_name, presyn_names) in prj_dict.iteritems():

        synapse_config = env.celltypes[postsyn_name]['synapses']
        if synapse_config.has_key('spines'):
            spines = synapse_config['spines']
        else:
            spines = False

        if synapse_config.has_key('unique'):
            unique = synapse_config['unique']
        else:
            unique = False

        if synapse_config.has_key('weights'):
            has_weights = synapse_config['weights']
        else:
            has_weights = False

        if synapse_config.has_key('weights namespace'):
            weights_namespace = synapse_config['weights namespace']
        else:
            weights_namespace = 'Weights'

        if env.verbose:
            if int(env.pc.id()) == 0:
                print '*** Reading synapse attributes of population %s' % (postsyn_name)

        gid_index_synapses_map = get_cell_attributes_index_map(env.comm, forestFilePath, 'GC', 'Synapse Attributes')
        if synapse_config.has_key('weights namespace'):
            gid_index_weights_map = get_cell_attributes_index_map(env.comm, forestFilePath, 'GC', weights_namespace)
        cell_synapses_dict, cell_weights_dict = {}, {}
        for gid in gid_list:
            cell_attributes_dict = select_cell_attributes(gid, env.comm, forestFilePath, gid_index_synapses_map,
                                                              'GC', 'Synapse Attributes')
            cell_synapses_dict[gid] = {k: v for (k, v) in cell_attributes_dict['Synapse Attributes']}
            if has_weights:
                cell_attributes_dict.update(get_cell_attributes_by_gid(gid, env.comm, forestFilePath,
                                                                       gid_index_synapses_map, 'GC', weights_namespace))
                cell_weights_dict[gid] = {k: v for (k, v) in cell_attributes_dict[weights_namespace]}
                if env.verbose:
                    if env.pc.id() == 0:
                        print '*** Found synaptic weights for population %s' % (postsyn_name)
            else:
                has_weights = False
                cell_weights_dict[gid] = None
            del cell_attributes_dict

        for presyn_name in presyn_names:

            edge_count = 0

            if env.verbose:
                if env.pc.id() == 0:
                    print '*** Connecting %s -> %s' % (presyn_name, postsyn_name)

            if env.nodeRanks is None:
                (graph, a) = scatter_read_graph(env.comm, connectivityFilePath, io_size=env.IOsize,
                                                projections=[(presyn_name, postsyn_name)],
                                                namespaces=['Synapses', 'Connections'])
            else:
                (graph, a) = scatter_read_graph(env.comm, connectivityFilePath, io_size=env.IOsize,
                                                node_rank_map=env.nodeRanks,
                                                projections=[(presyn_name, postsyn_name)],
                                                namespaces=['Synapses', 'Connections'])

            edge_iter = graph[postsyn_name][presyn_name]

            connection_dict = env.connection_generator[postsyn_name][presyn_name].connection_properties
            kinetics_dict = env.connection_generator[postsyn_name][presyn_name].synapse_kinetics

            syn_id_attr_index = a[postsyn_name][presyn_name]['Synapses']['syn_id']
            distance_attr_index = a[postsyn_name][presyn_name]['Connections']['distance']

            for (postsyn_gid, edges) in edge_iter:

                postsyn_cell = env.pc.gid2cell(postsyn_gid)
                cell_syn_dict = cell_synapses_dict[postsyn_gid]

                if has_weights:
                    cell_wgt_dict = cell_weights_dict[postsyn_gid]
                    syn_wgt_dict = {int(syn_id): float(weight) for (syn_id, weight) in
                                    itertools.izip(np.nditer(cell_wgt_dict['syn_id']),
                                                   np.nditer(cell_wgt_dict['weight']))}
                else:
                    syn_wgt_dict = None

                presyn_gids = edges[0]
                edge_syn_ids = edges[1]['Synapses'][syn_id_attr_index]
                edge_dists = edges[1]['Connections'][distance_attr_index]

                cell_syn_types = cell_syn_dict['syn_types']
                cell_swc_types = cell_syn_dict['swc_types']
                cell_syn_locs = cell_syn_dict['syn_locs']
                cell_syn_sections = cell_syn_dict['syn_secs']

                edge_syn_ps_dict = synapses.mksyns(postsyn_gid,
                                                   postsyn_cell,
                                                   edge_syn_ids,
                                                   cell_syn_types,
                                                   cell_swc_types,
                                                   cell_syn_locs,
                                                   cell_syn_sections,
                                                   kinetics_dict, env,
                                                   add_synapse=synapses.add_unique_synapse if unique else synapses.add_shared_synapse,
                                                   spines=spines)

                if env.verbose:
                    if int(env.pc.id()) == 0:
                        if edge_count == 0:
                            for sec in list(postsyn_cell.all):
                                h.psection(sec=sec)

                wgt_count = 0
                for (presyn_gid, edge_syn_id, distance) in itertools.izip(presyn_gids, edge_syn_ids, edge_dists):
                    syn_ps_dict = edge_syn_ps_dict[edge_syn_id]
                    for (syn_mech, syn_ps) in syn_ps_dict.iteritems():
                        connection_syn_mech_config = connection_dict[syn_mech]
                        if has_weights and syn_wgt_dict.has_key(edge_syn_id):
                            wgt_count += 1
                            weight = float(syn_wgt_dict[edge_syn_id]) * connection_syn_mech_config['weight']
                        else:
                            weight = connection_syn_mech_config['weight']
                        delay = distance / connection_syn_mech_config['velocity']
                        if type(weight) is float:
                            h.nc_appendsyn(env.pc, h.nclist, presyn_gid, postsyn_gid, syn_ps, weight, delay)
                        else:
                            h.nc_appendsyn_wgtvector(env.pc, h.nclist, presyn_gid, postsyn_gid, syn_ps, weight, delay)
                if env.verbose:
                    if int(env.pc.id()) == 0:
                        if edge_count == 0:
                            print '*** Found %i synaptic weights for gid %i' % (wgt_count, postsyn_gid)

                edge_count += len(presyn_gids)
예제 #4
0
from mpi4py import MPI
from neuroh5.io import scatter_read_graph
import numpy as np

comm = MPI.COMM_WORLD

print "rank = ", comm.Get_rank()
print "size = ", comm.Get_size()

if comm.Get_rank() == 0:
    node_rank_vector = np.loadtxt("parts.4096", dtype=np.uint32)
    node_rank_vector = comm.bcast(node_rank_vector, root=0)
else:
    node_rank_vector = None
    node_rank_vector = comm.bcast(node_rank_vector, root=0)

g = scatter_read_graph(
    "/projects/sciteam/baef/Full_Scale_Control/dentate_Full_Scale_Control_MPP.h5",
    128, node_rank_vector)
from mpi4py import MPI
from neuroh5.io import scatter_read_graph

comm = MPI.COMM_WORLD
rank = comm.rank

input_file='./data/dentate_test.h5'
input_file='/oasis/scratch/comet/iraikov/temp_project/dentate/Full_Scale_Control/DG_Connections_Full_Scale_20180722.h5'
input_file = '/scratch1/03320/iraikov/striped/dentate/Test_GC_1000/DG_Test_GC_1000_connections_20190625_compressed.h5'

#(g,a) = scatter_read_graph(comm, input_file, io_size=1, namespaces=["Attributes"])

(graph, a) = scatter_read_graph(input_file,io_size=8)
                                #projections=[('GC', 'MC'), ('MC', 'MC'), ('AAC', 'MC')],
                                #namespaces=['Synapses','Connections'])
#print graph.keys()
edge_dict = {}
edge_iter = graph['GC']['MC']
for (gid,edges) in edge_iter:
    edge_dict[gid] = edges

print("rank %d: %s" % (rank, str(edge_dict)))