print l inp = np.reshape(inp,(-1,l)) print tar[1] print inp #target = np.reshape(target,(-1,1)) # Create network with 2 layers and random initialized #norm = Norm(input) #input = norm(input) net = nl.net.newff(minmax(inp), [10, l], transf = [nl.trans.TanSig(), nl.trans.LogSig()]) net.trainf = nl.train.train_bfgs error = net.train(inp, tar, epochs=10, show=5, goal=0.01) """ test = [0,1] test = np.reshape(test,(-1,2)) out = net.sim(test) print out """
l = len(bag_of_words) print l inp = np.reshape(inp, (-1, l)) print tar[1] print inp #target = np.reshape(target,(-1,1)) # Create network with 2 layers and random initialized #norm = Norm(input) #input = norm(input) net = nl.net.newff(minmax(inp), [10, l], transf=[nl.trans.TanSig(), nl.trans.LogSig()]) net.trainf = nl.train.train_bfgs error = net.train(inp, tar, epochs=10, show=5, goal=0.01) """ test = [0,1] test = np.reshape(test,(-1,2)) out = net.sim(test) print out
import numpy as np import input import target from neurolab.tool import minmax # Create train samples input = np.array(input.data) target = np.asfarray(target.data) input = input[: target.shape[0]] # Create network with 2 layers and random initialized #norm = Norm(input) #input = norm(input) print input.shape print target.shape print '----------',minmax(input) net = nl.net.newff(minmax(input), [12, 4], transf = [nl.trans.TanSig(), nl.trans.LogSig()]) net.trainf = nl.train.train_bfgs error = net.train(input, target, epochs=1000, show=10, goal=0.02) print '-------',error[-1] net.save('net.net') #Simulate network print '\nprinting the simulated output'; net=nl.load('net.net') output = net.sim(input) out = output for i in range(len(output)): m=max(output[i]) print '[',m,']', for j in range(4): if output[i,j] == m:
import numpy as np import input import target from neurolab.tool import minmax # Create train samples input = np.array(input.data) target = np.asfarray(target.data) input = input[:target.shape[0]] # Create network with 2 layers and random initialized #norm = Norm(input) #input = norm(input) print input.shape print target.shape print '----------', minmax(input) net = nl.net.newff(minmax(input), [12, 4], transf=[nl.trans.TanSig(), nl.trans.LogSig()]) net.trainf = nl.train.train_bfgs error = net.train(input, target, epochs=1000, show=10, goal=0.02) print '-------', error[-1] net.save('net.net') #Simulate network print '\nprinting the simulated output' net = nl.load('net.net') output = net.sim(input) out = output for i in range(len(output)): m = max(output[i]) print '[', m, ']',