def _generate_cell_indices_seg_ids(pop_id, indices_segids, network): a = {} pop = network.get_child(pop_id, 'populations') if not isinstance(indices_segids, str) or not ':' in indices_segids: seg_ids = None indices = indices_segids else: indices = indices_segids.split(':')[0] seg_id_info = indices_segids.split(':')[1] l = parse_list_like(seg_id_info) print_v('Parsed %s as %s'%(seg_id_info, l)) seg_ids = l if indices=='*': size = evaluate(pop.size, network.parameters) for index in range(size): a[index] = seg_ids else: l = parse_list_like(indices) print_v('Parsed %s (full: %s) as %s'%(indices,indices_segids, l)) for index in l: a[index] = seg_ids return a
def load_network_json(filename): data = load_json(filename) print_v("Loaded network specification from %s" % filename) net = Network() net = _parse_element(data, net) return net
def load_network_json(filename): """ Load a NeuroMLlite network JSON file """ data = load_json(filename) print_v("Loaded network specification from %s"%filename) net = Network() net = _parse_element(data, net) return net
def load_simulation_json(filename): import json with open(filename, 'r') as f: data = json.load(f, object_hook=ascii_encode_dict) print_v("Loaded simulation specification from %s" % filename) sim = Simulation() sim = _parse_element(data, sim) return sim