예제 #1
0
    "tau_refrac": 3,
    "v_reset": -50,
    "v_rest": -78,
    "v_thresh": -47
}

net.cells.append(cell)
'''
cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = { "tau_refrac":5, "i_offset":-.1 }
net.cells.append(cell2)'''

input_source = InputSource(id='i_clamp',
                           pynn_input='DCSource',
                           parameters={
                               'amplitude': 'input_amp',
                               'start': 'input_del',
                               'stop': 'input_del+input_dur'
                           })
net.input_sources.append(input_source)

r1 = RectangularRegion(id='region1',
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

p0 = Population(id='pop0',
예제 #2
0
    "v_reset": -50,
    "v_rest": -78,
    "v_thresh": -47,
}

net.cells.append(cell)
"""
cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = { "tau_refrac":5, "i_offset":-.1 }
net.cells.append(cell2)"""

input_source = InputSource(
    id="i_clamp",
    pynn_input="DCSource",
    parameters={
        "amplitude": "input_amp",
        "start": "input_del",
        "stop": "input_del+input_dur",
    },
)
net.input_sources.append(input_source)

r1 = RectangularRegion(id="region1",
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)
예제 #3
0
def generate():
    ################################################################################
    ###   Build new network

    net = Network(id='ExampleK')
    net.notes = 'Example...'

    net.parameters = {'pop_size': '8', 'stim_amp': '0.3'}

    cell = Cell(id='kuramoto1', lems_source_file='CellExamples.xml')

    net.cells.append(cell)

    input_source = InputSource(id='iclamp0',
                               neuroml2_input='PulseGeneratorDL',
                               parameters={
                                   'amplitude': 'stim_amp',
                                   'delay': '100ms',
                                   'duration': '800ms'
                               })
    net.input_sources.append(input_source)
    '''

    input_source = InputSource(id='poissonFiringSyn', 
                               neuroml2_input='poissonFiringSynapse',
                               parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"})


'''

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(id='Epop',
                    size='pop_size',
                    component=cell.id,
                    properties={'color': '1 0 0'},
                    random_layout=RandomLayout(region=r1.id))

    net.populations.append(pE)
    '''
    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))


    net.projections.append(Projection(id='projEinput',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.02,
                                      one_to_one_connector=OneToOneConnector()))
               
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.002,
                                      random_connectivity=RandomConnectivity(probability=.5)))

    net.projections.append(Projection(id='projEI',
                                      presynaptic=pE.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))
    
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))
    '''
    net.inputs.append(
        Input(id='stim',
              input_source=input_source.id,
              population=pE.id,
              percentage=50))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExampleK',
                     network=new_file,
                     duration='1000',
                     dt='0.025',
                     seed=123,
                     recordVariables={'sin_theta': {
                         pE.id: '*'
                     }})

    sim.to_json_file()

    return sim, net
예제 #4
0
###   Build new network

net = Network(id='PopExample')
net.notes = 'Testing...'

net.seed = 1234

net.parameters = { 'N': 10, 'fractionE': 0.8, 'weightInput': 1, 'Wei':0.01, 'Wie':0.01}


cell = Cell(id='iafcell', pynn_cell='IF_cond_alpha')
cell.parameters = { "tau_refrac":0}
net.cells.append(cell)


input_source = InputSource(id='poissonFiringSyn100Hz', neuroml2_source_file='inputs.nml')
net.input_sources.append(input_source)

                           
net.input_sources.append(input_source)


pE = Population(id='Epop', size='int(N*fractionE)', component=cell.id, properties={'color':'.7 0 0'})
pI = Population(id='Ipop', size='N - int(N*fractionE)', component=cell.id, properties={'color':'0 0 .7'})

net.populations.append(pE)
net.populations.append(pI)

net.synapses.append(Synapse(id='ampaSyn', 
                            pynn_receptor_type='excitatory', 
                            pynn_synapse_type='cond_alpha', 
pops = [exc_pop, inh_pop]
internal_connections(pops)

# Add offset inputs

net.parameters['exc_input'] = '0nA'
net.parameters['inh_input'] = '0nA'
net.parameters['input_delay'] = '20ms'
net.parameters['input_duration'] = '60ms'

#net.parameters['scaling'] = '1nA'

input_source_e = InputSource(id='Exc_in',
                             neuroml2_input='PulseGenerator',
                             parameters={
                                 'amplitude': 'exc_input',
                                 'delay': 'input_delay',
                                 'duration': 'input_duration'
                             })
net.input_sources.append(input_source_e)
net.inputs.append(
    Input(id='Exc_stim',
          input_source=input_source_e.id,
          population=exc_pop.id,
          percentage=100))

input_source_i = InputSource(id='Inh_in',
                             neuroml2_input='PulseGenerator',
                             parameters={
                                 'amplitude': 'inh_input',
                                 'delay': 'input_delay',
예제 #6
0
################################################################################
###   Build new network

net = Network(id='delMolinoEtAl')
net.notes = 'delMolinoEtAl eLife 2017'

net.parameters = {'inputVIP': 10}

cell = Cell(id='ifcell', pynn_cell='IF_cond_alpha')
cell.parameters = {"tau_refrac": 5, "i_offset": .1}
net.cells.append(cell)

input_source0 = InputSource(id='iclamp0',
                            pynn_input='DCSource',
                            parameters={
                                'amplitude': 10,
                                'start': 50.,
                                'stop': 150.
                            })

net.input_sources.append(input_source0)

r1 = RectangularRegion(id='network',
                       x=0,
                       y=0,
                       z=0,
                       width=100,
                       height=100,
                       depth=10)
net.regions.append(r1)
예제 #7
0
from neuromllite import Network, Cell, InputSource, Population, Synapse
from neuromllite import Projection, RandomConnectivity, Input, Simulation
import sys

################################################################################
###   Build new network

net = Network(id='Example8_Extension')
net.notes = 'Example 8: extending exising networks'
net.parameters = {'N': 10, 'fractionE': 0.8, 'weightInput': 1}

cell = Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml')
net.cells.append(cell)

input_source = InputSource(id='poissonFiringSyn',
                           neuroml2_source_file='test_files/inputs.nml')
net.input_sources.append(input_source)
'''
input_source = InputSource(id='iclamp0', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.2, 'start':100., 'stop':900.})'''

net.input_sources.append(input_source)

pE = Population(id='Epop',
                size='int(N*fractionE)',
                component=cell.id,
                properties={'color': '.7 0 0'})
pRS = Population(id='RSpop',
                 size='N - int(N*fractionE)',
                 component=cell.id,
예제 #8
0
###   Build new network

net = Network(id="Example11_Synapses")
net.notes = "Example 11: synaptic properties"
net.parameters = {"input_amp": 0.23, "weight": 1.01}
#'tau_syn':     2}

cell = Cell(id="iafCell0", neuroml2_source_file="test_files/iaf.cell.nml")
# cell.parameters = { "tau_refrac":5, "i_offset":0 }
net.cells.append(cell)

input_source = InputSource(
    id="i_clamp",
    pynn_input="DCSource",
    parameters={
        "amplitude": "input_amp",
        "start": 200.0,
        "stop": 800.0
    },
)
net.input_sources.append(input_source)

r1 = RectangularRegion(id="region1",
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)
예제 #9
0
net.cells.append(cell)

pop = Population(id='izhPop',
                 size='1',
                 component=cell.id,
                 properties={'color': '.7 0 0'})
net.populations.append(pop)

net.parameters['delay'] = '100ms'
net.parameters['stim_amp'] = '100pA'
net.parameters['duration'] = '500ms'
input_source = InputSource(id='iclamp_0',
                           neuroml2_input='PulseGenerator',
                           parameters={
                               'amplitude': 'stim_amp',
                               'delay': 'delay',
                               'duration': 'duration'
                           })
net.input_sources.append(input_source)

net.inputs.append(
    Input(id='stim',
          input_source=input_source.id,
          population=pop.id,
          percentage=100))

print(net)
print(net.to_json())
new_file = net.to_json_file('%s.json' % net.id)
예제 #10
0
net = Network(id='Example4_PyNN')
net.notes = 'Example 4: a network with PyNN cells & inputs'
net.parameters = {'input_amp': 0.99}

cell = Cell(id='testcell', pynn_cell='IF_cond_alpha')
cell.parameters = {"tau_refrac": 5, "i_offset": .1}
net.cells.append(cell)

cell2 = Cell(id='testcell2', pynn_cell='IF_cond_alpha')
cell2.parameters = {"tau_refrac": 5, "i_offset": -.1}
net.cells.append(cell2)

input_source = InputSource(id='i_clamp',
                           pynn_input='DCSource',
                           parameters={
                               'amplitude': 'input_amp',
                               'start': 200.,
                               'stop': 800.
                           })
net.input_sources.append(input_source)

r1 = RectangularRegion(id='region1',
                       x=0,
                       y=0,
                       z=0,
                       width=1000,
                       height=100,
                       depth=1000)
net.regions.append(r1)

p0 = Population(id='pop0',
예제 #11
0
        "filename": "test_files/cons_locs_pathways_mc0_Column.h5",
        "percentage_cells_per_pop": percent,
        "DEFAULT_CELL_ID": default_cell.id,
        "cell_info": {
            default_cell.id: default_cell
        },
    },
)

net.cells.append(default_cell)
net.synapses.append(
    Synapse(id="ampa", neuroml2_source_file="test_files/ampa.synapse.nml"))
net.synapses.append(
    Synapse(id="gaba", neuroml2_source_file="test_files/gaba.synapse.nml"))

input_source = InputSource(id="poissonFiringSyn",
                           neuroml2_source_file="test_files/inputs.nml")
net.input_sources.append(input_source)

for pop in ["L4_PC"]:
    net.inputs.append(
        Input(
            id="stim_%s" % pop,
            input_source=input_source.id,
            population=pop,
            percentage=80,
        ))

new_file = net.to_json_file("%s.json" % net.id)

################################################################################
###   Builds a NeuroML 2 representation, save as XML
예제 #12
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id='McCPNet')
    net.notes = 'Example of simplified McCulloch-Pitts based Network'

    net.parameters = {'amp': 1.5, 'scale': 3}

    cell = Cell(id='mccp0', lems_source_file='McCPTest.xml')
    net.cells.append(cell)

    silentDL = Synapse(id='silentSyn_proj0', lems_source_file='McCPTest.xml')
    net.synapses.append(silentDL)
    rsDL = Synapse(id='rsDL', lems_source_file='McCPTest.xml')
    net.synapses.append(rsDL)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    p0 = Population(id='McCPpop0',
                    size='1*scale',
                    component=cell.id,
                    properties={
                        'color': '.9 0.9 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(p0)

    p1 = Population(id='McCPpop1',
                    size='1*scale',
                    component=cell.id,
                    properties={
                        'color': '.9 0 0.9',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(p1)

    net.projections.append(
        Projection(id='proj0',
                   presynaptic=p0.id,
                   postsynaptic=p1.id,
                   synapse=rsDL.id,
                   pre_synapse=silentDL.id,
                   type='continuousProjection',
                   weight='random()',
                   random_connectivity=RandomConnectivity(probability=0.6)))
    '''
                                      
    
    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))
                                
    
    net.projections.append(Projection(id='proj1',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pLNP.id,
                                      synapse='ampa',
                                      delay=0,
                                      weight='in_weight',
                                      random_connectivity=RandomConnectivity(probability=0.7)))'''

    input_source0 = InputSource(id='sg0', neuroml2_source_file='inputs.nml')
    net.input_sources.append(input_source0)
    input_source1 = InputSource(id='sg1', neuroml2_source_file='inputs.nml')
    net.input_sources.append(input_source1)

    for pop in [p0.id]:
        net.inputs.append(
            Input(id='stim0_%s' % pop,
                  input_source=input_source0.id,
                  population=pop,
                  percentage=60))

        net.inputs.append(
            Input(id='stim1_%s' % pop,
                  input_source=input_source1.id,
                  population=pop,
                  percentage=60))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordVariables={
                         'R': {
                             'all': '*'
                         },
                         'ISyn': {
                             'all': '*'
                         }
                     })

    sim.to_json_file()

    return sim, net
예제 #13
0
    'start':    0,
    'duration': 10000000000,
     'rate':    'input_rate'
}
net.cells.append(input_cell)

input_cell_100 = Cell(id='InputCell100', pynn_cell='SpikeSourcePoisson')
input_cell_100.parameters = {
    'start':    0,
    'duration': 10000000000,
     'rate':    100
}
net.cells.append(input_cell_100)


input_source_p0 = InputSource(id='poissonFiringSyn', neuroml2_source_file='../test_files/inputs.nml')
net.input_sources.append(input_source_p0)

input_source1 = InputSource(id='iclamp1', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.8, 'start':100., 'stop':900.})
                           
net.input_sources.append(input_source1)


pop0 = Population(id='pop0', size='N', component=cell.id, properties={'color':'.7 0 0'})
net.populations.append(pop0)
pop1 = Population(id='pop1', size='N', component=cell.id, properties={'color':'0 .7 0'})
net.populations.append(pop1)
pop2 = Population(id='pop2', size='N', component=cell.id, properties={'color':'0 .7 0.7'})
net.populations.append(pop2)
net = Network(id='Syn4Net')
net.notes = 'Syn4Net: synaptic properties'
net.parameters = { 'weight': 0.001,
                   'stim1_delay':      50,
                   'stim2_delay':      140}


cell = Cell(id='passiveCell', neuroml2_source_file='passiveCell.cell.nml')
net.cells.append(cell)

spkArr1 = Cell(id='spkArr1', neuroml2_source_file='inputs.nml')
net.cells.append(spkArr1)


stim1 = InputSource(id='stim1', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.4, 'start':'stim1_delay', 'stop':'stim1_delay+5'})
net.input_sources.append(stim1)

stim2 = InputSource(id='stim2', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':0.4, 'start':'stim2_delay', 'stop':'stim2_delay+5'})
net.input_sources.append(stim2)

r1 = RectangularRegion(id='region1', x=0,y=0,z=0,width=1000,height=100,depth=1000)
net.regions.append(r1)

p0 = Population(id='pop0', size=1, component=spkArr1.id, properties={'color':'1 0 0', 'radius':10},random_layout = RandomLayout(region=r1.id))
p1 = Population(id='pop1', size=1, component=cell.id, properties={'color':'0 1 0'},random_layout = RandomLayout(region=r1.id))

net.populations.append(p0)
예제 #15
0
def generate(ref, np2=0, np5=0, nb2=0, nb5=0, recordTraces='*'):
    ################################################################################
    ###   Build new network

    net = Network(id=ref)
    net.notes = 'Example: %s...' % ref

    net.seed = 7890
    net.temperature = 32

    net.parameters = {
        'np2': np2,
        'np5': np5,
        'nb2': nb2,
        'nb5': nb5,
        'offset_curr_l2p': -0.05,
        'weight_bkg_l2p': 0.01,
        'weight_bkg_l5p': 0.01
    }

    l2p_cell = Cell(id='CELL_HH_reduced_L2Pyr',
                    neuroml2_source_file='../CELL_HH_reduced_L2Pyr.cell.nml')
    net.cells.append(l2p_cell)
    l5p_cell = Cell(id='CELL_HH_reduced_L5Pyr',
                    neuroml2_source_file='../CELL_HH_reduced_L5Pyr.cell.nml')
    net.cells.append(l5p_cell)
    l2b_cell = Cell(id='CELL_HH_simple_L2Basket',
                    neuroml2_source_file='../CELL_HH_simple_L2Basket.cell.nml')
    net.cells.append(l2b_cell)
    l5b_cell = Cell(id='CELL_HH_simple_L5Basket',
                    neuroml2_source_file='../CELL_HH_simple_L5Basket.cell.nml')
    net.cells.append(l5b_cell)

    input_source_poisson100 = InputSource(id='poissonFiringSyn100Hz',
                                          neuroml2_source_file='../inputs.nml')
    net.input_sources.append(input_source_poisson100)

    input_offset_curr_l2p = InputSource(id='input_offset_curr_l2p',
                                        pynn_input='DCSource',
                                        parameters={
                                            'amplitude': 'offset_curr_l2p',
                                            'start': 0,
                                            'stop': 1e9
                                        })

    net.input_sources.append(input_offset_curr_l2p)

    l2 = RectangularRegion(id='L2',
                           x=0,
                           y=1000,
                           z=0,
                           width=1000,
                           height=10,
                           depth=1000)
    net.regions.append(l2)
    l5 = RectangularRegion(id='L5',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=10,
                           depth=1000)
    net.regions.append(l5)

    #https://github.com/OpenSourceBrain/OpenCortex
    import opencortex.utils.color as occ

    pop_l2p = Population(id='pop_l2p',
                         size='np2',
                         component=l2p_cell.id,
                         properties={'color': occ.L23_PRINCIPAL_CELL},
                         random_layout=RandomLayout(region=l2.id))
    net.populations.append(pop_l2p)
    pop_l5p = Population(id='pop_l5p',
                         size='np5',
                         component=l5p_cell.id,
                         properties={'color': occ.L5_PRINCIPAL_CELL},
                         random_layout=RandomLayout(region=l5.id))
    net.populations.append(pop_l5p)
    pop_l2b = Population(id='pop_l2b',
                         size='nb2',
                         component=l2b_cell.id,
                         properties={'color': occ.L23_INTERNEURON},
                         random_layout=RandomLayout(region=l2.id))
    net.populations.append(pop_l2b)
    pop_l5b = Population(id='pop_l5b',
                         size='nb5',
                         component=l5b_cell.id,
                         properties={'color': occ.L5_INTERNEURON},
                         random_layout=RandomLayout(region=l5.id))
    net.populations.append(pop_l5b)

    # L2 -> L2
    _add_projection(pop_l2p,
                    pop_l2b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l2p,
                    'L2Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l2p,
                    'L2Pyr_GABAB',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    # L2 -> L5
    _add_projection(pop_l2p,
                    pop_l5p,
                    'L5Pyr_AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2p,
                    pop_l5b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l5p,
                    'L5Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    # L5 -> L5
    _add_projection(pop_l5p,
                    pop_l5b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l5b,
                    pop_l5p,
                    'L5Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l5b,
                    pop_l5p,
                    'L5Pyr_GABAB',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    net.inputs.append(
        Input(id='stim_%s' % pop_l2p.id,
              input_source=input_source_poisson100.id,
              population=pop_l2p.id,
              percentage=100,
              weight='weight_bkg_l2p'))
    net.inputs.append(
        Input(id='stim_%s' % pop_l5p.id,
              input_source=input_source_poisson100.id,
              population=pop_l5p.id,
              percentage=100,
              weight='weight_bkg_l5p'))

    print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration='500',
                     seed='1111',
                     dt='0.025',
                     recordTraces={'all': recordTraces},
                     recordSpikes={'all': '*'})

    sim.to_json_file()
    print(sim.to_json())

    return sim, net
예제 #16
0
cell.parameters = {"tau_refrac": 10}
net.cells.append(cell)

input_cell = Cell(id="InputCell", pynn_cell="SpikeSourcePoisson")
input_cell.parameters = {
    "start": 0,
    "duration": 10000000000,
    "rate": "input_rate"
}
net.cells.append(input_cell)

input_cell_100 = Cell(id="InputCell100", pynn_cell="SpikeSourcePoisson")
input_cell_100.parameters = {"start": 0, "duration": 10000000000, "rate": 100}
net.cells.append(input_cell_100)

input_source_p0 = InputSource(id="poissonFiringSyn",
                              neuroml2_source_file="../test_files/inputs.nml")
net.input_sources.append(input_source_p0)

input_source1 = InputSource(
    id="iclamp1",
    pynn_input="DCSource",
    parameters={
        "amplitude": 0.8,
        "start": 100.0,
        "stop": 900.0
    },
)

net.input_sources.append(input_source1)

pop0 = Population(id="pop0",
예제 #17
0
                properties={'color': '0 0 .9'},
                random_layout=RandomLayout(region=r1.id))

### Append populations to network
net.populations.append(pE)
net.populations.append(pI)

############################### Inputs (Noise) ################################
# Noise on excitatory neurons
stdNoiseE = (sigmaV / R) * (tauE_m**0.5) / (dt**0.5)

input_sourceE = InputSource(id='noisyCurrentSourceE',
                            lems_source_file='TestNCS.xml',
                            parameters={
                                'mean': '0.0nA',
                                'stdev': str(stdNoiseE) + 'nA',
                                'noiseDt': '%sms' % dt,
                                'delay': '0ms',
                                'duration': '%sms' % duration
                            })
# Noise on inhibitory neurons
stdNoiseI = (sigmaV / R) * (tauI_m**0.5) / (dt**0.5)
input_sourceI = InputSource(id='noisyCurrentSourceI',
                            lems_source_file='TestNCS.xml',
                            parameters={
                                'mean': '0.0nA',
                                'stdev': str(stdNoiseI) + 'nA',
                                'noiseDt': '%sms' % dt,
                                'delay': '0ms',
                                'duration': '%sms' % duration
                            })
예제 #18
0
                     properties={
                         'color': '0 0 0.8',
                         'radius': 10
                     },
                     relative_layout=RelativeLayout(region=r1.id,
                                                    x=20,
                                                    y=0,
                                                    z=0))

net.populations.append(exc_pop)
net.populations.append(inh_pop)

input_source = InputSource(id='pulseGenerator0',
                           neuroml2_input='PulseGenerator',
                           parameters={
                               'amplitude': '0nA',
                               'delay': '100.0ms',
                               'duration': '800.0ms'
                           })
net.input_sources.append(input_source)

net.inputs.append(
    Input(id='stim',
          input_source=input_source.id,
          population=exc_pop.id,
          percentage=100))

exc_syn = Synapse(id='rsExc', lems_source_file='Demirtas_Parameters.xml')
inh_syn = Synapse(id='rsInh', lems_source_file='Demirtas_Parameters.xml')
net.synapses.append(exc_syn)
net.synapses.append(inh_syn)