def cmdline_simulate(args): print 'Simulating' for arg, arg_value in vars(args).items(): print arg, arg_value from neurounits import NeuroUnitParser, MQ1 from neurounits.nineml_fe.nineml_fe_utils import get_src_9ml_files # Load from all the include directories, but only add files once # to prevent duplicate entries in the library_manager #src_files = [] #for incl_path in args.include: # assert os.path.exists(incl_path) # # Add all the files in a directory: # if os.path.isdir(incl_path): # new_files = sorted([ os.path.abspath(fname) for fname in glob.glob(incl_path+'/*.9ml') ] ) # for fname in new_files: # if not fname in src_files: # src_files.append(fname) # # Add an individual file: # elif os.path.isfile(incl_path): # if not incl_path in src_files: # src_files.append(incl_path) src_files = get_src_9ml_files(args) # Read all the input files: library_manager = NeuroUnitParser.Parse9MLFiles(filenames=src_files) # Get the component: component = library_manager.get(args.component) component.summarise() # Get the start and end times: t_end = NeuroUnitParser.QuantitySimple(args.endt) assert t_end.is_compatible(MQ1('1s').units) t_end = t_end.float_in_si() dt = NeuroUnitParser.QuantitySimple(args.dt) assert dt.is_compatible(MQ1('1s').units) dt = dt.float_in_si() # OK lets simulate! res = component.simulate(times=np.arange(0, t_end, dt), ) print 'Simulating' for arg, arg_value in vars(args).items(): print arg, arg_value # and plot: res.auto_plot() # Shall we pop up? if args.show_plot: pylab.show() print 'Simulating' for arg, arg_value in vars(args).items(): print arg, arg_value
def cmdline_summarise(args): import mredoc print 'Summarise' from neurounits import NeuroUnitParser, MQ1 from neurounits.nineml_fe.nineml_fe_utils import get_src_9ml_files src_files = get_src_9ml_files(args) # Read all the input files: library_manager = NeuroUnitParser.Parse9MLFiles(filenames=src_files) print args.what if not args.what: objs = list(library_manager.objects) else: objs = [ library_manager.get(name) for name in args.what ] summaries = [] for o in objs: print 'Summarising:', repr(o) summaries.append( o.to_redoc() ) summary_obj = mredoc.Section(