def realworld(seed: Optional[int] = None) -> Iterator[Experiment]: """Realworld optimization. This experiment contains: - a subset of MLDA (excluding the perceptron: 10 functions rescaled or not. - ARCoating https://arxiv.org/abs/1904.02907: 1 function. - The 007 game: 1 function, noisy. - PowerSystem: a power system simulation problem. - STSP: a simple TSP problem. MLDA stuff, except the Perceptron. """ funcs: List[Union[ExperimentFunction, rl.agents.TorchAgentFunction]] = [ _mlda.Clustering.from_mlda(name, num, rescale) for name, num in [("Ruspini", 5), ("German towns", 10)] for rescale in [True, False] ] funcs += [ _mlda.SammonMapping.from_mlda("Virus", rescale=False), _mlda.SammonMapping.from_mlda("Virus", rescale=True), _mlda.SammonMapping.from_mlda("Employees"), ] funcs += [_mlda.Landscape(transform) for transform in [None, "square", "gaussian"]] # Adding ARCoating. funcs += [ARCoating()] funcs += [PowerSystem(), PowerSystem(13)] funcs += [STSP(), STSP(500)] funcs += [game.Game("war")] funcs += [game.Game("batawaf")] funcs += [game.Game("flip")] funcs += [game.Game("guesswho")] funcs += [game.Game("bigguesswho")] # 007 with 100 repetitions, both mono and multi architectures. base_env = rl.envs.DoubleOSeven(verbose=False) random_agent = rl.agents.Agent007(base_env) modules = {'mono': rl.agents.Perceptron, 'multi': rl.agents.DenseNet} agents = {a: rl.agents.TorchAgent.from_module_maker(base_env, m, deterministic=False) for a, m in modules.items()} env = base_env.with_agent(player_0=random_agent).as_single_agent() runner = rl.EnvironmentRunner(env.copy(), num_repetitions=100, max_step=50) for archi in ["mono", "multi"]: func = rl.agents.TorchAgentFunction(agents[archi], runner, reward_postprocessing=lambda x: 1 - x) funcs += [func] seedg = create_seed_generator(seed) algos = ["NaiveTBPSA", "LargeScrHammersleySearch", "ScrHammersleySearch", "PSO", "OnePlusOne", "NGO", "Shiva", "DiagonalCMA", "CMA", "TwoPointsDE", "QrDE", "LhsDE", "Zero", "StupidRandom", "RandomSearch", "HaltonSearch", "RandomScaleRandomSearch", "MiniDE"] for budget in [25, 50, 100, 200, 400, 800, 1600, 3200, 6400, 12800]: for num_workers in [1, 10, 100]: if num_workers < budget: for algo in algos: for fu in funcs: xp = Experiment(fu, algo, budget, num_workers=num_workers, seed=next(seedg)) if not xp.is_incoherent: yield xp
def double_o_seven(seed: Optional[int] = None) -> Iterator[Experiment]: # pylint: disable=too-many-locals seedg = create_seed_generator(seed) base_env = rl.envs.DoubleOSeven(verbose=False) random_agent = rl.agents.Agent007(base_env) modules = {'mono': rl.agents.Perceptron, 'multi': rl.agents.DenseNet} agents = {a: rl.agents.TorchAgent.from_module_maker(base_env, m, deterministic=False) for a, m in modules.items()} env = base_env.with_agent(player_0=random_agent).as_single_agent() for num_repetitions in [1, 10, 100]: for archi in ["mono", "multi"]: dde = ng.optimizers.DifferentialEvolution(crossover="dimension").with_name("DiscreteDE") for optim in ["PSO", "NGO", "Shiva", "DiagonalCMA", "CMA", "DE", "TwoPointsDE", "TBPSA", "OnePlusOne", "Zero", "RandomSearch", "AlmostRotationInvariantDE", dde]: for env_budget in [5000, 10000, 20000, 40000]: for num_workers in [1, 10, 100]: # careful, not threadsafe runner = rl.EnvironmentRunner(env.copy(), num_repetitions=num_repetitions, max_step=50) func = rl.agents.TorchAgentFunction(agents[archi], runner, reward_postprocessing=lambda x: 1 - x) opt_budget = env_budget // num_repetitions yield Experiment(func, optim, budget=opt_budget, num_workers=num_workers, seed=next(seedg)) # type: ignore