def conv3x3(in_planes, out_planes, bitW, stride=1): "3x3 convolution with padding" return self_conv(in_planes, out_planes, bitW, kernel_size=3, stride=stride, padding=1, bias=False)
def __init__(self, inplanes, planes, bitW, kernel_size=1, stride=1, bias=False): super(downsample_layer, self).__init__() self.conv = self_conv(inplanes, planes, bitW, kernel_size=kernel_size, stride=stride, bias=False) self.batch_norm = nn.BatchNorm2d(planes)