예제 #1
0
def test_jacobian_missing_kwargs(kind):
    dudcol = 0.25
    dudrow = 0.1
    dvdcol = -0.4
    dvdrow = 0.34
    col = 5.6
    row = -10.4

    if kind == 'row-col':
        kwargs = dict(col=col,
                      row=row,
                      dudcol=dudcol,
                      dudrow=dudrow,
                      dvdcol=dvdcol,
                      dvdrow=dvdrow)
    elif kind == 'x-y':
        kwargs = dict(x=col,
                      y=row,
                      dudx=dudcol,
                      dudy=dudrow,
                      dvdx=dvdcol,
                      dvdy=dvdrow)

    for key in kwargs:
        tst_kwargs = {}
        tst_kwargs.update(kwargs)
        del tst_kwargs[key]

        with pytest.raises(ValueError):
            Jacobian(**tst_kwargs)
예제 #2
0
def test_pixels_smoke(x, y, wcs_g1, wcs_g2, ignore_zero_weight):
    gs_wcs = galsim.ShearWCS(0.25, galsim.Shear(g1=wcs_g1,
                                                g2=wcs_g2)).jacobian()
    jac = Jacobian(y=y,
                   x=x,
                   dudx=gs_wcs.dudx,
                   dudy=gs_wcs.dudy,
                   dvdx=gs_wcs.dvdx,
                   dvdy=gs_wcs.dvdy)
    dims = (13, 15)

    rng = np.random.RandomState(seed=11)
    image = rng.normal(size=dims)
    weight = np.exp(rng.normal(size=dims))

    weight[10, 9] = 0
    weight[8, 7] = 0

    pixels = make_pixels(image,
                         weight,
                         jac,
                         ignore_zero_weight=ignore_zero_weight)

    assert np.allclose(pixels['area'], jac.area)

    found_zero = 0
    for i in range(len(pixels)):
        y, x = jac.get_rowcol(pixels['v'][i], pixels['u'][i])
        assert np.allclose(x, int(x + 0.5))
        assert np.allclose(y, int(y + 0.5))
        x = int(x + 0.5)
        y = int(y + 0.5)

        assert pixels['val'][i] == image[y, x]
        assert np.allclose(pixels['ierr'][i], np.sqrt(weight[y, x]))

        if x == 9 and y == 10:
            found_zero += 1
        if y == 8 and x == 7:
            found_zero += 1

    if ignore_zero_weight:
        assert found_zero == 0
    else:
        assert found_zero == 2
예제 #3
0
    def get_exp_list(self, psf2=None):

        if psf2 is None:
            psf2 = self.psfs

        obs_list = ObsList()
        psf_list = ObsList()

        w = []
        for i in range(len(self.gals)):
            im = self.gals[i].array
            im_psf = self.psfs[i].array
            im_psf2 = psf2[i].array
            weight = 1 / self.skys[i].array

            jacob = self.gals[i].wcs.jacobian()
            dx = self.offsets[i].x
            dy = self.offsets[i].y

            gal_jacob = Jacobian(row=self.gals[i].true_center.y + dy,
                                 col=self.gals[i].true_center.x + dx,
                                 dvdrow=jacob.dvdy,
                                 dvdcol=jacob.dvdx,
                                 dudrow=jacob.dudy,
                                 dudcol=jacob.dudx)
            psf_jacob2 = gal_jacob

            mask = np.where(weight != 0)
            w.append(np.mean(weight[mask]))
            noise = old_div(np.ones_like(weight), w[-1])

            psf_obs = Observation(im_psf,
                                  jacobian=gal_jacob,
                                  meta={
                                      'offset_pixels': None,
                                      'file_id': None
                                  })
            psf_obs2 = Observation(im_psf2,
                                   jacobian=psf_jacob2,
                                   meta={
                                       'offset_pixels': None,
                                       'file_id': None
                                   })
            obs = Observation(im,
                              weight=weight,
                              jacobian=gal_jacob,
                              psf=psf_obs,
                              meta={
                                  'offset_pixels': None,
                                  'file_id': None
                              })
            obs.set_noise(noise)

            obs_list.append(obs)
            psf_list.append(psf_obs2)

        return obs_list, psf_list, np.array(w)
예제 #4
0
def test_unit_jacobian_missing_kwargs(kind):
    col = 5.6
    row = -10.4

    if kind == 'row-col':
        kwargs = dict(col=col, row=row)
    elif kind == 'x-y':
        kwargs = dict(x=col, y=row)

    for key in kwargs:
        tst_kwargs = {}
        tst_kwargs.update(kwargs)
        del tst_kwargs[key]

        with pytest.raises(Exception):
            Jacobian(**tst_kwargs)
예제 #5
0
    def get_jacobian(self, type='galaxy'):
        """
        get the jacobian and return a Jacobian object
        """
        jdict = self.meds.get_jacobian(self.mindex, 0)

        row0 = jdict['row0']
        col0 = jdict['col0']

        if self['fix_centroid_bug'] and type == 'galaxy':
            print("fixing centroid bug")
            row0 = row0 - 1
            col0 = col0 - 1

        jacob = Jacobian(row0, col0, jdict['dudrow'], jdict['dudcol'],
                         jdict['dvdrow'], jdict['dvdcol'])

        return jacob
예제 #6
0
def test_coords_smoke(x, y, wcs_g1, wcs_g2):
    gs_wcs = galsim.ShearWCS(0.25, galsim.Shear(g1=wcs_g1,
                                                g2=wcs_g2)).jacobian()
    jac = Jacobian(y=y,
                   x=x,
                   dudx=gs_wcs.dudx,
                   dudy=gs_wcs.dudy,
                   dvdx=gs_wcs.dvdx,
                   dvdy=gs_wcs.dvdy)
    dims = (13, 15)

    coords = make_coords(dims, jac)
    loc = 0
    for y in range(dims[0]):
        for x in range(dims[1]):
            v, u = jac(y, x)
            assert u == coords['u'][loc]
            assert v == coords['v'][loc]
            loc += 1
예제 #7
0
def get_exp_list(gals_array, psfs_array, offsets, skys_array, gal_true, gal_jacobs, psf2=None):
    #def get_exp_list(gal, psf, sky_stamp, psf2=None):

    if psf2 is None:
        psf2 = psfs_array

    obs_list=ObsList()
    psf_list=ObsList()

    w = []
    for i in range(len(gals_array)):
        im = gals_array[i]
        im_psf = psfs_array[i]
        im_psf2 = psf2[i]
        weight = 1/skys_array[i]

        jacob = gal_jacobs[i]
        dx = offsets[i].x
        dy = offsets[i].y
        
        gal_jacob = Jacobian(
            row=gal_true[i].y+dy,
            col=gal_true[i].x+dx,
            dvdrow=jacob.dvdy,
            dvdcol=jacob.dvdx,
            dudrow=jacob.dudy,
            dudcol=jacob.dudx)
        psf_jacob2 = gal_jacob
        print(gal_jacob)

        mask = np.where(weight!=0)
        w.append(np.mean(weight[mask]))
        noise = old_div(np.ones_like(weight),w[-1])
        psf_obs = Observation(im_psf, jacobian=gal_jacob, meta={'offset_pixels':None,'file_id':None})
        psf_obs2 = Observation(im_psf2, jacobian=psf_jacob2, meta={'offset_pixels':None,'file_id':None})
        obs = Observation(im, weight=weight, jacobian=gal_jacob, psf=psf_obs, meta={'offset_pixels':None,'file_id':None})
        obs.set_noise(noise)

        obs_list.append(obs)
        psf_list.append(psf_obs2)

    return obs_list,psf_list,np.array(w)
예제 #8
0
        def get_ngmix_jacobian(self, iobj, icutout):
            """Get an ngmix.Jacobian representation.

            Parameters
            ----------
            iobj : int
                Index of the object.
            icutout : int
                Index of the cutout for this object.

            Returns
            -------
            jacob : ngmix.Jacobian
                The `Jacobian` for the cutout.
            """
            jd = self.get_jacobian(iobj, icutout)
            return Jacobian(row=jd['row0'],
                            col=jd['col0'],
                            dudrow=jd['dudrow'],
                            dudcol=jd['dudcol'],
                            dvdrow=jd['dvdrow'],
                            dvdcol=jd['dvdcol'])
예제 #9
0
def test_jacobian_smoke(kind):
    dudcol = 0.25
    dudrow = 0.1
    dvdcol = -0.4
    dvdrow = 0.34
    col = 5.6
    row = -10.4

    if kind == 'row-col':
        jac = Jacobian(col=col,
                       row=row,
                       dudcol=dudcol,
                       dudrow=dudrow,
                       dvdcol=dvdcol,
                       dvdrow=dvdrow)
    elif kind == 'x-y':
        jac = Jacobian(x=col,
                       y=row,
                       dudx=dudcol,
                       dudy=dudrow,
                       dvdx=dvdcol,
                       dvdy=dvdrow)
    else:
        wcs = galsim.JacobianWCS(dudx=dudcol,
                                 dudy=dudrow,
                                 dvdx=dvdcol,
                                 dvdy=dvdrow)
        jac = Jacobian(x=col, y=row, wcs=wcs)

    assert np.allclose(jac.row0, row)
    assert np.allclose(jac.col0, col)
    assert np.allclose(jac.dudcol, dudcol)
    assert np.allclose(jac.dudrow, dudrow)
    assert np.allclose(jac.dvdcol, dvdcol)
    assert np.allclose(jac.dvdrow, dvdrow)

    assert np.allclose(jac.det, dudcol * dvdrow - dudrow * dvdcol)
    assert np.allclose(jac.sdet,
                       np.sqrt(np.abs(dudcol * dvdrow - dudrow * dvdcol)))
    assert np.allclose(jac.scale,
                       np.sqrt(np.abs(dudcol * dvdrow - dudrow * dvdcol)))

    r, c = 20.0, -44.5
    v, u = jac.get_vu(r, c)
    assert np.allclose(v, dvdrow * (r - row) + dvdcol * (c - col))
    assert np.allclose(u, dudrow * (r - row) + dudcol * (c - col))
    v, u = jac(r, c)
    assert np.allclose(v, dvdrow * (r - row) + dvdcol * (c - col))
    assert np.allclose(u, dudrow * (r - row) + dudcol * (c - col))

    v, u = 20.0, -44.5
    r, c = jac.get_rowcol(v, u)
    assert np.allclose(r, (dudcol * v - dvdcol * u) / jac.det + row)
    assert np.allclose(c, (-dudrow * v + dvdrow * u) / jac.det + col)

    gs_wcs = jac.get_galsim_wcs()
    assert np.allclose(gs_wcs.dudx, jac.dudcol)
    assert np.allclose(gs_wcs.dudy, jac.dudrow)
    assert np.allclose(gs_wcs.dvdx, jac.dvdcol)
    assert np.allclose(gs_wcs.dvdy, jac.dvdrow)

    cpy_jac = jac.copy()
    cpy_jac.set_cen(row=-11, col=-12)
    assert np.allclose(jac.row0, row)
    assert np.allclose(jac.col0, col)
    assert np.allclose(cpy_jac.row0, -11)
    assert np.allclose(cpy_jac.col0, -12)
def multiband_coadd():
    local_Hmeds = './fiducial_H158_2285117.fits'
    local_Jmeds = './fiducial_J129_2285117.fits'
    local_Fmeds = './fiducial_F184_2285117.fits'
    truth = fio.FITS(
        '/hpc/group/cosmology/phy-lsst/my137/roman_H158/g1002/truth/fiducial_lensing_galaxia_g1002_truth_gal.fits'
    )[-1]
    m_H158 = meds.MEDS(local_Hmeds)
    m_J129 = meds.MEDS(local_Jmeds)
    m_F184 = meds.MEDS(local_Fmeds)
    indices_H = np.arange(len(m_H158['number'][:]))
    indices_J = np.arange(len(m_J129['number'][:]))
    indices_F = np.arange(len(m_F184['number'][:]))
    roman_H158_psfs = get_psf_SCA('H158')
    roman_J129_psfs = get_psf_SCA('J129')
    roman_F184_psfs = get_psf_SCA('F184')
    oversample = 1
    metacal_keys = ['noshear', '1p', '1m', '2p', '2m']
    res_noshear = np.zeros(len(m_H158['number'][:]),
                           dtype=[('ind', int), ('ra', float), ('dec', float),
                                  ('flags', int), ('coadd_px', float),
                                  ('coadd_py', float), ('coadd_flux', float),
                                  ('coadd_snr', float), ('coadd_e1', float),
                                  ('coadd_e2', float), ('coadd_hlr', float),
                                  ('coadd_psf_e1', float),
                                  ('coadd_psf_e2', float),
                                  ('coadd_psf_T', float)])
    res_1p = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])
    res_1m = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])
    res_2p = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])
    res_2m = np.zeros(len(m_H158['number'][:]),
                      dtype=[('ind', int), ('ra', float), ('dec', float),
                             ('flags', int), ('coadd_px', float),
                             ('coadd_py', float), ('coadd_flux', float),
                             ('coadd_snr', float), ('coadd_e1', float),
                             ('coadd_e2', float), ('coadd_hlr', float),
                             ('coadd_psf_e1', float), ('coadd_psf_e2', float),
                             ('coadd_psf_T', float)])

    res_tot = [res_noshear, res_1p, res_1m, res_2p, res_2m]
    for i, ii in enumerate(
            indices_H):  # looping through all the objects in meds file.
        if i % 100 == 0:
            print('object number ', i)
        ind = m_H158['number'][ii]
        t = truth[ind]
        sca_Hlist = m_H158[ii][
            'sca']  # List of SCAs for the same object in multiple observations.
        sca_Jlist = m_J129[ii]['sca']
        sca_Flist = m_F184[ii]['sca']
        m2_H158_coadd = [
            roman_H158_psfs[j - 1] for j in sca_Hlist[:m_H158['ncutout'][i]]
        ]
        m2_J129_coadd = [
            roman_J129_psfs[j - 1] for j in sca_Jlist[:m_J129['ncutout'][i]]
        ]
        m2_F184_coadd = [
            roman_F184_psfs[j - 1] for j in sca_Flist[:m_F184['ncutout'][i]]
        ]

        obs_Hlist, psf_Hlist, included_H, w_H = get_exp_list_coadd(
            m_H158, ii, m2=m2_H158_coadd)
        coadd_H = psc.Coadder(obs_Hlist, flat_wcs=True).coadd_obs
        coadd_H.psf.image[
            coadd_H.psf.image < 0] = 0  # set negative pixels to zero.
        coadd_H.set_meta({'offset_pixels': None, 'file_id': None})

        obs_Jlist, psf_Jlist, included_J, w_J = get_exp_list_coadd(
            m_J129, ii, m2=m2_J129_coadd)
        coadd_J = psc.Coadder(obs_Jlist, flat_wcs=True).coadd_obs
        coadd_J.psf.image[
            coadd_J.psf.image < 0] = 0  # set negative pixels to zero.
        coadd_J.set_meta({'offset_pixels': None, 'file_id': None})

        obs_Flist, psf_Flist, included_F, w_F = get_exp_list_coadd(
            m_F184, ii, m2=m2_F184_coadd)
        coadd_F = psc.Coadder(obs_Flist, flat_wcs=True).coadd_obs
        coadd_F.psf.image[
            coadd_F.psf.image < 0] = 0  # set negative pixels to zero.
        coadd_F.set_meta({'offset_pixels': None, 'file_id': None})

        coadd = [coadd_H, coadd_J, coadd_F]
        mb_obs_list = MultiBandObsList()

        #coadd = [coadd_H]
        for band in range(3):
            obs_list = ObsList()
            new_coadd_psf_block = block_reduce(coadd[band].psf.image,
                                               block_size=(4, 4),
                                               func=np.sum)
            new_coadd_psf_jacob = Jacobian(
                row=15.5,
                col=15.5,
                dvdrow=(coadd[band].psf.jacobian.dvdrow * oversample),
                dvdcol=(coadd[band].psf.jacobian.dvdcol * oversample),
                dudrow=(coadd[band].psf.jacobian.dudrow * oversample),
                dudcol=(coadd[band].psf.jacobian.dudcol * oversample))
            coadd_psf_obs = Observation(new_coadd_psf_block,
                                        jacobian=new_coadd_psf_jacob,
                                        meta={
                                            'offset_pixels': None,
                                            'file_id': None
                                        })
            coadd[band].psf = coadd_psf_obs
            obs_list.append(coadd[band])
            mb_obs_list.append(obs_list)

        iteration = 0
        for key in metacal_keys:
            res_tot[iteration]['ind'][i] = ind
            res_tot[iteration]['ra'][i] = t['ra']
            res_tot[iteration]['dec'][i] = t['dec']
            iteration += 1

        #print(i, t['size'], mb_obs_list[0][0].image.sum(), mb_obs_list[1][0].image.sum(), mb_obs_list[2][0].image.sum())
        res_ = measure_shape_metacal_multiband(
            mb_obs_list,
            t['size'],
            method='bootstrap',
            fracdev=t['bflux'],
            use_e=[t['int_e1'], t['int_e2']])
        iteration = 0
        for key in metacal_keys:
            if res_ == 0:
                res_tot[iteration]['ind'][i] = 0
            elif res_[key]['flags'] == 0:
                res_tot[iteration]['coadd_px'][i] = res_[key]['pars'][0]
                res_tot[iteration]['coadd_py'][i] = res_[key]['pars'][1]
                res_tot[iteration]['coadd_snr'][i] = res_[key]['s2n']
                res_tot[iteration]['coadd_e1'][i] = res_[key]['pars'][2]
                res_tot[iteration]['coadd_e2'][i] = res_[key]['pars'][3]
                res_tot[iteration]['coadd_hlr'][i] = res_[key]['pars'][4]
            iteration += 1

    mask = res_tot[0]['ind'] != 0
    print(len(res_tot[0]), len(res_tot[0][mask]))
    #print(res_['noshear'].dtype.names)
    print('done')
def get_exp_list_coadd(m, i, m2=None):
    def make_jacobian(dudx, dudy, dvdx, dvdy, x, y):
        j = galsim.JacobianWCS(dudx, dudy, dvdx, dvdy)
        return j.withOrigin(galsim.PositionD(x, y))

    oversample = 1
    #def psf_offset(i,j,star_):
    m3 = [0]
    #relative_offset=[0]
    for jj, psf_ in enumerate(m2):  # m2 has psfs for each observation.
        if jj == 0:
            continue
        gal_stamp_center_row = m['orig_start_row'][i][jj] + m['box_size'][
            i] / 2 - 0.5  # m['box_size'] is the galaxy stamp size.
        gal_stamp_center_col = m['orig_start_col'][i][jj] + m['box_size'][
            i] / 2 - 0.5  # m['orig_start_row/col'] is in SCA coordinates.
        psf_stamp_size = 32

        # Make the bounds for the psf stamp.
        b = galsim.BoundsI(
            xmin=(m['orig_start_col'][i][jj] +
                  (m['box_size'][i] - 32) / 2. - 1) * oversample + 1,
            xmax=(m['orig_start_col'][i][jj] +
                  (m['box_size'][i] - 32) / 2. + psf_stamp_size - 1) *
            oversample,
            ymin=(m['orig_start_row'][i][jj] +
                  (m['box_size'][i] - 32) / 2. - 1) * oversample + 1,
            ymax=(m['orig_start_row'][i][jj] +
                  (m['box_size'][i] - 32) / 2. + psf_stamp_size - 1) *
            oversample)

        # Make wcs for oversampled psf.
        wcs_ = make_jacobian(
            m.get_jacobian(i, jj)['dudcol'] / oversample,
            m.get_jacobian(i, jj)['dudrow'] / oversample,
            m.get_jacobian(i, jj)['dvdcol'] / oversample,
            m.get_jacobian(i, jj)['dvdrow'] / oversample,
            m['orig_col'][i][jj] * oversample,
            m['orig_row'][i][jj] * oversample)
        # Taken from galsim/roman_psfs.py line 266. Update each psf to an object-specific psf using the wcs.
        scale = galsim.PixelScale(wfirst.pixel_scale / oversample)
        psf_ = wcs_.toWorld(scale.toImage(psf_),
                            image_pos=galsim.PositionD(wfirst.n_pix / 2,
                                                       wfirst.n_pix / 2))

        # Convolve with the star model and get the psf stamp.
        #st_model = galsim.DeltaFunction(flux=1.)
        #st_model = st_model.evaluateAtWavelength(wfirst.getBandpasses(AB_zeropoint=True)['H158'].effective_wavelength)
        #st_model = st_model.withFlux(1.)
        #st_model = galsim.Convolve(st_model, psf_)
        psf_ = galsim.Convolve(psf_, galsim.Pixel(wfirst.pixel_scale))
        psf_stamp = galsim.Image(b, wcs=wcs_)

        # Galaxy is being drawn with some subpixel offsets, so we apply the offsets when drawing the psf too.
        offset_x = m['orig_col'][i][jj] - gal_stamp_center_col
        offset_y = m['orig_row'][i][jj] - gal_stamp_center_row
        offset = galsim.PositionD(offset_x, offset_y)
        if (offset_x <= -1.0 or offset_y <= -1.0):
            print(offset)
        elif (offset_x >= 1.0 or offset_y >= 1.0):
            print(offset)
        psf_.drawImage(image=psf_stamp, offset=offset, method='no_pixel')
        m3.append(psf_stamp.array)

    obs_list = ObsList()
    psf_list = ObsList()

    included = []
    w = []
    # For each of these objects create an observation
    for j in range(m['ncutout'][i]):
        if j == 0:
            continue
        # if j>1:
        #     continue
        im = m.get_cutout(i, j, type='image')
        weight = m.get_cutout(i, j, type='weight')

        im_psf = m3[j]
        im_psf2 = im_psf
        if np.sum(im) == 0.:
            #print(local_meds, i, j, np.sum(im))
            print('no flux in image ', i, j)
            continue

        jacob = m.get_jacobian(i, j)
        # Get a galaxy jacobian.
        gal_jacob = Jacobian(
            row=(m['orig_row'][i][j] - m['orig_start_row'][i][j]),
            col=(m['orig_col'][i][j] - m['orig_start_col'][i][j]),
            dvdrow=jacob['dvdrow'],
            dvdcol=jacob['dvdcol'],
            dudrow=jacob['dudrow'],
            dudcol=jacob['dudcol'])

        psf_center = (32 / 2.) + 0.5
        # Get a oversampled psf jacobian.
        if oversample == 1:
            psf_jacob2 = Jacobian(
                row=15.5 +
                (m['orig_row'][i][j] - m['orig_start_row'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                col=15.5 +
                (m['orig_col'][i][j] - m['orig_start_col'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                dvdrow=jacob['dvdrow'] / oversample,
                dvdcol=jacob['dvdcol'] / oversample,
                dudrow=jacob['dudrow'] / oversample,
                dudcol=jacob['dudcol'] / oversample)
        elif oversample == 4:
            psf_jacob2 = Jacobian(
                row=63.5 +
                (m['orig_row'][i][j] - m['orig_start_row'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                col=63.5 +
                (m['orig_col'][i][j] - m['orig_start_col'][i][j] + 1 -
                 (m['box_size'][i] / 2. + 0.5)) * oversample,
                dvdrow=jacob['dvdrow'] / oversample,
                dvdcol=jacob['dvdcol'] / oversample,
                dudrow=jacob['dudrow'] / oversample,
                dudcol=jacob['dudcol'] / oversample)

        # Create an obs for each cutout
        mask = np.where(weight != 0)
        if 1. * len(weight[mask]) / np.product(np.shape(weight)) < 0.8:
            continue

        w.append(np.mean(weight[mask]))
        noise = np.ones_like(weight) / w[-1]

        psf_obs = Observation(im_psf,
                              jacobian=gal_jacob,
                              meta={
                                  'offset_pixels': None,
                                  'file_id': None
                              })
        psf_obs2 = Observation(im_psf2,
                               jacobian=psf_jacob2,
                               meta={
                                   'offset_pixels': None,
                                   'file_id': None
                               })
        #obs = Observation(im, weight=weight, jacobian=gal_jacob, psf=psf_obs, meta={'offset_pixels':None,'file_id':None})
        # oversampled PSF
        obs = Observation(im,
                          weight=weight,
                          jacobian=gal_jacob,
                          psf=psf_obs2,
                          meta={
                              'offset_pixels': None,
                              'file_id': None
                          })
        obs.set_noise(noise)

        obs_list.append(obs)
        psf_list.append(psf_obs2)
        included.append(j)

    return obs_list, psf_list, np.array(included) - 1, np.array(w)
def single_vs_coadd_images():
    local_Hmeds = './fiducial_F184_2285117.fits'
    truth = fio.FITS('/hpc/group/cosmology/phy-lsst/my137/roman_F184/g1002/truth/fiducial_lensing_galaxia_g1002_truth_gal.fits')[-1]
    m_H158  = meds.MEDS(local_Hmeds)
    indices_H = np.arange(len(m_H158['number'][:]))
    roman_H158_psfs = get_psf_SCA('F184')
    oversample = 4
    metacal_keys=['noshear', '1p', '1m', '2p', '2m']
    res_noshear=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_1p=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_1m=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_2p=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])
    res_2m=np.zeros(len(m_H158['number'][:]),dtype=[('ind',int), ('ra',float), ('dec',float), ('flags',int),('int_e1',float), ('int_e2',float),('coadd_px',float), ('coadd_py',float), ('coadd_flux',float), ('coadd_snr',float), ('coadd_e1',float), ('coadd_e2',float), ('coadd_hlr',float),('coadd_psf_e1',float), ('coadd_psf_e2',float), ('coadd_psf_T',float)])

    res_tot=[res_noshear, res_1p, res_1m, res_2p, res_2m]
    for i,ii in enumerate(indices_H): # looping through all the objects in meds file. 
        if i%100==0:
            print('object number ',i)
        # if i not in [1,600]:
        #     continue
        ind = m_H158['number'][ii]
        t   = truth[ind]
        sca_Hlist = m_H158[ii]['sca'] # List of SCAs for the same object in multiple observations. 
        m2_H158_coadd = [roman_H158_psfs[j-1] for j in sca_Hlist[:m_H158['ncutout'][i]]]

        obs_Hlist,psf_Hlist,included_H,w_H = get_exp_list_coadd(m_H158,ii,oversample,m2=m2_H158_coadd)
        s2n_test = get_snr(obs_Hlist)
        # if i in [1,600]: #in [ 309,  444,  622,  644,  854, 1070, 1282, 1529]:
        #     for l in range(len(obs_Hlist)):
        #         #print(i, obs_Hlist[l].jacobian, obs_Hlist[l].psf.jacobian)
        #         print(i, obs_Hlist[l].weight)
                # np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/single_image_oversample4_08scaling_'+str(i)+'_'+str(l)+'.txt', obs_Hlist[l].image)
            # np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/single_psf_oversample4_08scaling_'+str(i)+'.txt', obs_Hlist[0].psf.image)
        coadd_H            = psc.Coadder(obs_Hlist,flat_wcs=True).coadd_obs
        coadd_H.psf.image[coadd_H.psf.image<0] = 0 # set negative pixels to zero. 
        coadd_H.set_meta({'offset_pixels':None,'file_id':None})

        obs_list = ObsList()
        if oversample == 4:
            new_coadd_psf_block = block_reduce(coadd_H.psf.image, block_size=(4,4), func=np.sum)
            new_coadd_psf_jacob = Jacobian( row=15.5,
                                            col=15.5, 
                                            dvdrow=(coadd_H.psf.jacobian.dvdrow*oversample),
                                            dvdcol=(coadd_H.psf.jacobian.dvdcol*oversample),
                                            dudrow=(coadd_H.psf.jacobian.dudrow*oversample),
                                            dudcol=(coadd_H.psf.jacobian.dudcol*oversample))
            coadd_psf_obs = Observation(new_coadd_psf_block, jacobian=new_coadd_psf_jacob, meta={'offset_pixels':None,'file_id':None})
            coadd_H.psf = coadd_psf_obs
        obs_list.append(coadd_H)
        s2n_coadd = get_snr(obs_list)
        # if i in [1,600]:
        #     print(i, coadd_H.weight)
            #np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/coadd_image_oversample4_08scaling_'+str(i)+'.txt', coadd_H.image)
            # np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/coadd_weight_oversample4_08scaling_'+str(i)+'.txt', coadd_H.weight)
            #np.savetxt('/hpc/group/cosmology/masaya/wfirst_simulation/paper/coadd_psf_over-downsample4_08scaling_'+str(i)+'.txt', coadd_H.psf.image)

        iteration=0
        for key in metacal_keys:
            res_tot[iteration]['ind'][i]                       = ind
            res_tot[iteration]['ra'][i]                        = t['ra']
            res_tot[iteration]['dec'][i]                       = t['dec']
            res_tot[iteration]['int_e1'][i]                    = t['int_e1']
            res_tot[iteration]['int_e2'][i]                    = t['int_e2']

            iteration+=1
        
        res_ = measure_shape_metacal(obs_list, t['size'], method='bootstrap', fracdev=t['bflux'],use_e=[t['int_e1'],t['int_e2']])
        print('signal to noise test', i, s2n_test, s2n_coadd, res_['noshear']['s2n_r'])
        # if res_[key]['s2n'] > 1e7:
        #     print('coadd snr', res_[key]['s2n'])
        #     np.savetxt('large_coadd_snr_image.txt', coadd_H.image)
        iteration=0
        for key in metacal_keys:
            if res_==0:
                res_tot[iteration]['ind'][i]                       = 0
            elif res_[key]['flags']==0:
                res_tot[iteration]['coadd_px'][i]                  = res_[key]['pars'][0]
                res_tot[iteration]['coadd_py'][i]                  = res_[key]['pars'][1]
                res_tot[iteration]['coadd_snr'][i]                 = res_[key]['s2n']
                res_tot[iteration]['coadd_e1'][i]                  = res_[key]['pars'][2]
                res_tot[iteration]['coadd_e2'][i]                  = res_[key]['pars'][3]
                res_tot[iteration]['coadd_hlr'][i]                 = res_[key]['pars'][4]
            iteration+=1

    mask=res_tot[0]['ind']!=0
    print(len(res_tot[0]), len(res_tot[0][mask]))
    #print(res_['noshear'].dtype.names)
    print('done')
예제 #13
0
    def _get_nbrs_data(self,cen_id,band,cutout_index):
        """
        return cen and nbrs info for a given cen_id

        Parameters
        ----------
        cen_id: id of central object
        band: integer for band (e.g., 0 for griz MOF)
        cutout_index: index of epoch in MEDS file for nbrs

        Returns
        -------
        cen_ind: index of central intp returned fit_data
        cen_flags: flags for central from nbrs_data
        cen_psf_gmix: an ngmix GMix for PSF of central
        cen_jac: an ngmix Jacobian for the central
        nbrs_inds: list of indexes into returned fit_data of nbrs
        nbrs_flags: flags of nbrs (only use flags == 0)
        nbrs_psf_gmixes: a list of ngmix GMixes of the PSF models for the nbrs
        nbrs_jacs: a list of ngmix Jacobians for the nbrs
        fit_data: entries of input fit_data corresponding to cen_ind and nbrs_inds
        pixel_scale: the pixel_scale of the jacobian associated with the image

        will return None if thete is an error or if not all quantities are found
        """

        fit_inds = []

        # get cen stuff
        q, = numpy.where(self.fit_data['id'] == cen_id)
        if len(q) != 1:
            return None

        cen_ind = 0
        fit_inds.append(q[0])

        q, = numpy.where(
            (self.nbrs_data['id'] == cen_id)
            & (self.nbrs_data['nbr_id'] == cen_id)
            & (self.nbrs_data['band_num'] == band)
            & (self.nbrs_data['cutout_index'] == cutout_index)
        )
        if len(q) != 1:
            return None

        ind = q[0]
        cen_flags = self.nbrs_data['nbr_flags'][ind]
        if cen_flags == 0:
            cen_jac = Jacobian(
                row=self.nbrs_data['nbr_jac_row0'][ind],
                col=self.nbrs_data['nbr_jac_col0'][ind],
                dudrow=self.nbrs_data['nbr_jac_dudrow'][ind],
                dudcol=self.nbrs_data['nbr_jac_dudcol'][ind],
                dvdrow=self.nbrs_data['nbr_jac_dvdrow'][ind],
                dvdcol=self.nbrs_data['nbr_jac_dvdcol'][ind]
            )
            cen_psf_gmix = GMix(pars=self.nbrs_data['nbr_psf_fit_pars'][ind,:])
        else:
            cen_psf_gmix = None
            cen_jac = None

        pixel_scale = self.nbrs_data['pixel_scale'][ind]

        # get nbr ids
        q, = numpy.where(
            (self.nbrs_data['id'] == cen_id)
            & (self.nbrs_data['nbr_id'] != cen_id)
            & (self.nbrs_data['band_num'] == band)
            & (self.nbrs_data['cutout_index'] == cutout_index)
        )
        if len(q) == 0:
            return None

        n1 = len(numpy.unique(self.nbrs_data['nbr_id'][q]))
        n2 = len(self.nbrs_data['nbr_id'][q])

        mess=("nbrs list for given band %d and cutout_index "
              "%d for object %d is not unique!" % (band,cutout_index,cen_id))
        assert n1==n2, mess

        nbrs_inds = [i+1 for i in xrange(len(q))]

        # find location of nbrs in fit_data
        for nbr_id in self.nbrs_data['nbr_id'][q]:
            qq, = numpy.where(self.fit_data['id'] == nbr_id)
            if len(qq) != 1:
                return None
            fit_inds.append(qq[0])

        # doing fit data
        fit_data = self.fit_data[fit_inds]

        # build flag, psf and jacobian lists
        nbrs_flags = []
        nbrs_psf_gmixes = []
        nbrs_jacs = []
        for i,ind in enumerate(q):
            check=fit_data['id'][i+1] == self.nbrs_data['nbr_id'][ind]
            assert check,"Matching of nbr_ids to ids in fit_data did not work!"
            nbrs_flags.append(self.nbrs_data['nbr_flags'][ind])

            if nbrs_flags[-1] == 0:
                nbrs_jacs.append(
                    Jacobian(
                        row=self.nbrs_data['nbr_jac_row0'][ind],
                        col=self.nbrs_data['nbr_jac_col0'][ind],
                        dudrow=self.nbrs_data['nbr_jac_dudrow'][ind],
                        dudcol=self.nbrs_data['nbr_jac_dudcol'][ind],
                        dvdrow=self.nbrs_data['nbr_jac_dvdrow'][ind],
                        dvdcol=self.nbrs_data['nbr_jac_dvdcol'][ind]
                    )
                )
                tgm = GMix(pars=self.nbrs_data['nbr_psf_fit_pars'][ind,:])
                nbrs_psf_gmixes.append(tgm)
            else:
                nbrs_jacs.append(None)
                nbrs_psf_gmixes.append(None)

        return cen_ind, cen_flags, cen_psf_gmix, cen_jac, \
            nbrs_inds, nbrs_flags, nbrs_psf_gmixes, nbrs_jacs, \
            fit_data, pixel_scale
예제 #14
0
    def render_central(self,
                       cen_id,
                       meds_data,
                       mindex,
                       cutout_index,
                       model,
                       band,
                       image_shape):
        """
        just render the central.  This is needed since Matt does not
        store data for the central i the nbrs data structure if there
        are no neighbors

        you must send epoch_data= to the constructor
        """
        import esutil as eu

        #
        # set and check some parameters
        #
        if self.epoch_data is None:
            raise RuntimeError(
                "send epoch_data= to the constructor to render centrals"
            )

        pars_tag = '%s_max_pars' % model
        if model == 'cm':
            fracdev_tag = 'cm_fracdev'
            TdByTe_tag = 'cm_TdByTe'
        else:
            fracdev_tag=None
            TdByTe_tag=None

        #
        # get data needed to render the central
        #
        we,=numpy.where(
            (self.epoch_data['id'] == cen_id)
            & (self.epoch_data['cutout_index'] == cutout_index)
        )

        if we.size == 0:
            print("    central not in epochs data")
            return None

        psf_pars=self.epoch_data['psf_fit_pars'][we[0],:]
        psf_gmix = GMix(pars=psf_pars)
        e1,e2,T=psf_gmix.get_e1e2T()
        if T <= 0.0:
            print("    bad psf fit for central")
            return None

        pixel_scale=self.epoch_data['pixel_scale'][we[0]]

        jdict=meds_data.get_jacobian(mindex, cutout_index)
        jac=Jacobian(
            row=jdict['row0'],
            col=jdict['col0'],
            dudrow=jdict['dudrow'],
            dudcol=jdict['dudcol'],
            dvdrow=jdict['dvdrow'],
            dvdcol=jdict['dvdcol'],
        )


        # fit information for central
        wfit, = numpy.where(self.fit_data['id'] == cen_id)
        if wfit.size != 1:
            # not sure why this would happen
            print("    Central not found in fit_data")
            return None

        fit_data = self.fit_data[wfit]
        cen_flags=fit_data['flags'][0]
        if cen_flags != 0:
            print("    bad central fit:",cen_flags)
            return None

        cen_img = RenderNGmixNbrs._render_single(
            model,
            band,
            image_shape,
            pars_tag,
            fit_data,
            psf_gmix,
            jac,
            fracdev_tag=fracdev_tag,TdByTe_tag=TdByTe_tag,
        )

        if cen_img is None:
            return None

        return cen_img, pixel_scale
예제 #15
0
    def _get_nbrs_data(self, cen_id, band, cutout_index):
        """
        return cen and nbrs info for a given cen_id

        Parameters
        ----------
        cen_id: id of central object
        band: integer for band (e.g., 0 for griz MOF)
        cutout_index: index of epoch in MEDS file for nbrs

        Returns
        -------
        cen_ind: index of central intp returned fit_data
        cen_flags: flags for central from nbrs_data
        cen_psf_gmix: an ngmix GMix for PSF of central
        cen_jac: an ngmix Jacobian for the central
        nbrs_inds: list of indexes into returned fit_data of nbrs
        nbrs_flags: flags of nbrs (only use flags == 0)
        nbrs_psf_gmixes: a list of ngmix GMixes of the PSF models for the nbrs
        nbrs_jacs: a list of ngmix Jacobians for the nbrs
        fit_data: entries of input fit_data corresponding to cen_ind and nbrs_inds
        pixel_scale: the pixel_scale of the jacobian associated with the image

        will return None if thete is an error or if not all quantities are found
        """

        fit_inds = []

        # get cen stuff
        qids, = numpy.where(self.fit_ids == cen_id)
        if len(qids) != 1:
            print("    no cen match in fits")
            return None

        cen_ind = 0
        fit_inds.append(qids[0])

        qnbrs_ids, = numpy.where(self.nbrs_ids == cen_id)
        if len(qnbrs_ids) == 0:
            return None

        # extract just the data we need
        nbrs_data = self._fits['nbrs_data'][qnbrs_ids]

        qcen, = numpy.where((nbrs_data['nbr_id'] == cen_id)
                            & (nbrs_data['band_num'] == band)
                            & (nbrs_data['cutout_index'] == cutout_index))
        if len(qcen) != 1:
            return None

        ind = qcen[0]
        cen_flags = nbrs_data['nbr_flags'][ind]
        if cen_flags == 0:
            cen_jac = Jacobian(row=nbrs_data['nbr_jac_row0'][ind],
                               col=nbrs_data['nbr_jac_col0'][ind],
                               dudrow=nbrs_data['nbr_jac_dudrow'][ind],
                               dudcol=nbrs_data['nbr_jac_dudcol'][ind],
                               dvdrow=nbrs_data['nbr_jac_dvdrow'][ind],
                               dvdcol=nbrs_data['nbr_jac_dvdcol'][ind])
            cen_psf_gmix = GMix(pars=nbrs_data['nbr_psf_fit_pars'][ind, :])
        else:
            cen_psf_gmix = None
            cen_jac = None

        pixel_scale = nbrs_data['pixel_scale'][ind]

        # get nbr ids
        qnbr, = numpy.where((nbrs_data['nbr_id'] != cen_id)
                            & (nbrs_data['band_num'] == band)
                            & (nbrs_data['cutout_index'] == cutout_index))
        if len(qnbr) == 0:
            return None

        n1 = len(numpy.unique(nbrs_data['nbr_id'][qnbr]))
        n2 = len(nbrs_data['nbr_id'][qnbr])

        if n1 != n2:
            # not sure why this happens, but it seems to be very rare.
            # For now ignore
            mess = ("nbrs list for given band %d and cutout_index "
                    "%d for object %d is not unique! %d:%d" %
                    (band, cutout_index, cen_id, n1, n2))
            print(nbrs_data['nbr_id'][qnbr])
            print(mess)
            return None
            #raise RuntimeError(mess)

        nbrs_inds = [i + 1 for i in xrange(len(qnbr))]

        # find location of nbrs in fit_data
        for nbr_id in nbrs_data['nbr_id'][qnbr]:
            qq, = numpy.where(self.fit_ids == nbr_id)
            if len(qq) != 1:
                print("    nbr", nbr_id, "not found in fit data")
                return None
            fit_inds.append(qq[0])

        # doing fit data
        # the data come out in row order, we need to reorder

        fit_data_list = []
        for tmp_ind in fit_inds:
            fit_data_list.append(self._fits['model_fits'][tmp_ind])

        fit_data = eu.numpy_util.combine_arrlist(fit_data_list)

        # build flag, psf and jacobian lists
        nbrs_flags = []
        nbrs_psf_gmixes = []
        nbrs_jacs = []
        for i, ind in enumerate(qnbr):
            check = fit_data['id'][i + 1] == nbrs_data['nbr_id'][ind]
            assert check, "Matching of nbr_ids to ids in fit_data did not work!"
            nbrs_flags.append(nbrs_data['nbr_flags'][ind])

            if nbrs_flags[-1] == 0:
                nbrs_jacs.append(
                    Jacobian(row=nbrs_data['nbr_jac_row0'][ind],
                             col=nbrs_data['nbr_jac_col0'][ind],
                             dudrow=nbrs_data['nbr_jac_dudrow'][ind],
                             dudcol=nbrs_data['nbr_jac_dudcol'][ind],
                             dvdrow=nbrs_data['nbr_jac_dvdrow'][ind],
                             dvdcol=nbrs_data['nbr_jac_dvdcol'][ind]))
                tgm = GMix(pars=nbrs_data['nbr_psf_fit_pars'][ind, :])
                nbrs_psf_gmixes.append(tgm)
            else:
                nbrs_jacs.append(None)
                nbrs_psf_gmixes.append(None)

        return cen_ind, cen_flags, cen_psf_gmix, cen_jac, \
            nbrs_inds, nbrs_flags, nbrs_psf_gmixes, nbrs_jacs, \
            fit_data, pixel_scale
예제 #16
0
def get_exp_list(gal, psf, offsets, sky_stamp, psf2=None):
    #def get_exp_list(gal, psf, sky_stamp, psf2=None):

    if psf2 is None:
        psf2 = psf

    obs_list = ObsList()
    psf_list = ObsList()

    w = []
    for i in range(len(gal)):
        im = gal[i].array
        im_psf = psf[i].array
        im_psf2 = psf2[i].array
        weight = 1 / sky_stamp[i].array

        jacob = gal[i].wcs.jacobian()
        dx = offsets[i].x
        dy = offsets[i].y

        gal_jacob = Jacobian(row=gal[i].true_center.y + dy,
                             col=gal[i].true_center.x + dx,
                             dvdrow=jacob.dvdy,
                             dvdcol=jacob.dvdx,
                             dudrow=jacob.dudy,
                             dudcol=jacob.dudx)
        #gal_jacob = Jacobian(
        #    row=gal[i].true_center.x+dx,
        #    col=gal[i].true_center.y+dy,
        #    dvdrow=jacob.dudx,
        #    dvdcol=jacob.dudy,
        #    dudrow=jacob.dvdx,
        #    dudcol=jacob.dvdy)
        psf_jacob2 = gal_jacob

        mask = np.where(weight != 0)
        w.append(np.mean(weight[mask]))
        noise = old_div(np.ones_like(weight), w[-1])

        psf_obs = Observation(im_psf,
                              jacobian=gal_jacob,
                              meta={
                                  'offset_pixels': None,
                                  'file_id': None
                              })
        psf_obs2 = Observation(im_psf2,
                               jacobian=psf_jacob2,
                               meta={
                                   'offset_pixels': None,
                                   'file_id': None
                               })
        obs = Observation(im,
                          weight=weight,
                          jacobian=gal_jacob,
                          psf=psf_obs,
                          meta={
                              'offset_pixels': None,
                              'file_id': None
                          })
        obs.set_noise(noise)

        obs_list.append(obs)
        psf_list.append(psf_obs2)

    #print(obs_list)
    return obs_list, psf_list, np.array(w)