def test_pconnscalar(): parcel_map = create_parcel_map((0, 1)) scalar_map = create_scalar_map((2, )) matrix = ci.Cifti2Matrix() matrix.append(parcel_map) matrix.append(scalar_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(3, 3, 13) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_PARCELLATED_' 'PARCELLATED_SCALAR') with InTemporaryDirectory(): ci.save(img, 'test.pconnscalar.nii') img2 = ci.load('test.pconnscalar.nii') assert_equal(img.nifti_header.get_intent()[0], 'ConnPPSc') assert_true(isinstance(img2, ci.Cifti2Image)) assert_true((img2.get_data() == data).all()) assert_equal(img2.header.matrix.get_index_map(0), img2.header.matrix.get_index_map(1)) check_parcel_map(img2.header.matrix.get_index_map(0)) check_scalar_map(img2.header.matrix.get_index_map(2)) del img2
def test_wrong_shape(): scalar_map = create_scalar_map((0, )) brain_model_map = create_geometry_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(scalar_map) matrix.append(brain_model_map) hdr = ci.Cifti2Header(matrix) # correct shape is (2, 10) for data in ( np.random.randn(1, 11), np.random.randn(2, 10, 1), np.random.randn(1, 2, 10), np.random.randn(3, 10), np.random.randn(2, 9), ): with clear_and_catch_warnings(): with error_warnings(): with pytest.raises(UserWarning): ci.Cifti2Image(data, hdr) with suppress_warnings(): img = ci.Cifti2Image(data, hdr) with pytest.raises(ValueError): img.to_file_map()
def to_header(axes): """ Converts the axes describing the rows/columns of a CIFTI vector/matrix to a Cifti2Header Parameters ---------- axes : iterable[Axis] one or more axes describing each dimension in turn Returns ------- cifti2.Cifti2Header """ axes = list(axes) mims_all = [] matrix = cifti2.Cifti2Matrix() for dim, ax in enumerate(axes): if ax in axes[:dim]: dim_prev = axes.index(ax) mims_all[dim_prev].applies_to_matrix_dimension.append(dim) mims_all.append(mims_all[dim_prev]) else: mim = ax.to_mapping(dim) mims_all.append(mim) matrix.append(mim) return cifti2.Cifti2Header(matrix)
def test_matrix(): m = ci.Cifti2Matrix() assert_raises(TypeError, m, setattr, 'metadata', ci.Cifti2Parcel()) assert_raises(TypeError, m.__setitem__, 0, ci.Cifti2Parcel()) assert_raises(TypeError, m.insert, 0, ci.Cifti2Parcel()) mim_none = ci.Cifti2MatrixIndicesMap(None, 'CIFTI_INDEX_TYPE_LABELS') mim_0 = ci.Cifti2MatrixIndicesMap(0, 'CIFTI_INDEX_TYPE_LABELS') mim_1 = ci.Cifti2MatrixIndicesMap(1, 'CIFTI_INDEX_TYPE_LABELS') mim_01 = ci.Cifti2MatrixIndicesMap([0, 1], 'CIFTI_INDEX_TYPE_LABELS') assert_raises(ci.Cifti2HeaderError, m.insert, 0, mim_none) assert_equal(m.mapped_indices, []) h = ci.Cifti2Header(matrix=m) assert_equal(m.mapped_indices, []) m.insert(0, mim_0) assert_equal(h.mapped_indices, [0]) assert_equal(h.number_of_mapped_indices, 1) assert_raises(ci.Cifti2HeaderError, m.insert, 0, mim_0) assert_raises(ci.Cifti2HeaderError, m.insert, 0, mim_01) m[0] = mim_1 assert_equal(list(m.mapped_indices), [1]) m.insert(0, mim_0) assert_equal(list(sorted(m.mapped_indices)), [0, 1]) assert_equal(h.number_of_mapped_indices, 2) assert_equal(h.get_index_map(0), mim_0) assert_equal(h.get_index_map(1), mim_1) assert_raises(ci.Cifti2HeaderError, h.get_index_map, 2)
def yeo_to_91k(dlabel, medial_wall, reference, out): """Convert Yeo-style dlabels (Yeo and Schaefer parcellations) to 91k grayordinate space The Yeo lab generates dlabel's inclusive of medial wall vertices and only for the cortical surfaces. This is different from how typical dlabels are formatted, which exclude medial wall vertices and include voxels from all subcortical and cerebellar structures (i.e. the full 91k grayordinate space). This function corrects Yeo dlabels to proper 91k grayordinates. Parameters ---------- dlabel : str A Yeo-style .dlabel.nii atlas medial_wall : str HCP medial wall mask (.dlabel.nii) reference : str A reference .dlabel.nii file with 91k grayordinates and all brain models included out : str Output 91k grayordinate .dlabel.nii file """ dlabel = nib.load(dlabel) medial_wall = nib.load(medial_wall) ref = nib.load(reference) # remove medial wall vertices array = dlabel.get_fdata() corrected_array = array[np.logical_not(medial_wall.get_fdata())] # expand to 91k grayordinates = np.zeros(ref.shape) grayordinates[0, :corrected_array.shape[0]] = corrected_array # make header labels = dlabel.header.get_axis(index=0).label[0] label_table = ci.Cifti2LabelTable() for key, (tag, rgba) in labels.items(): label_table[key] = ci.Cifti2Label(key, tag, *rgba) maps = [ci.Cifti2NamedMap('labels', ci.Cifti2MetaData({}), label_table)] label_map = ci.Cifti2MatrixIndicesMap( applies_to_matrix_dimension=(0, ), indices_map_to_data_type='CIFTI_INDEX_TYPE_LABELS', maps=maps) model_map = ci.Cifti2MatrixIndicesMap( applies_to_matrix_dimension=(1, ), indices_map_to_data_type='CIFTI_INDEX_TYPE_BRAIN_MODELS', maps=list(ref.header.get_index_map(1).brain_models)) model_map.volume = ref.header.get_index_map(1).volume matrix = ci.Cifti2Matrix() matrix.append(label_map) matrix.append(model_map) hdr = ci.Cifti2Header(matrix) out_dtseries = ci.Cifti2Image(grayordinates, hdr) out_dtseries.to_filename(out) return out
def dlabel_to_dtseries(dlabel, out, n=10): """Create a mock .dtseries.nii from an .dlabel file All timepoints (rows) in .dtseries.nii are duplicates of the .dlabel array. This enables a way to verify that expected data is correctly extracted (e.g., label 1 should extract a timeseries of all 1's, etc). Parameters ---------- dlabel : str File name of a .dlabel.nii file out : str File name of output .dtseries.nii n : int, optional Number of timepoints to generate, by default 100 """ dlabel = nib.load(dlabel) # imitate data with TR=2 label_array = dlabel.get_fdata().ravel() tseries = np.tile(label_array, (n, 1)) data_map = ci.Cifti2MatrixIndicesMap( applies_to_matrix_dimension=(0, ), indices_map_to_data_type='CIFTI_INDEX_TYPE_SERIES', number_of_series_points=tseries.shape[0], series_start=0, series_step=2, series_exponent=0, series_unit='SECOND') # take brain models from dlabel model_map = ci.Cifti2MatrixIndicesMap( applies_to_matrix_dimension=(1, ), indices_map_to_data_type='CIFTI_INDEX_TYPE_BRAIN_MODELS', maps=list(dlabel.header.get_index_map(1).brain_models)) volume = dlabel.header.get_index_map(1).volume if volume is not None: model_map.volume = dlabel.header.get_index_map(1).volume # make header matrix = ci.Cifti2Matrix() matrix.append(data_map) matrix.append(model_map) hdr = ci.Cifti2Header(matrix) out_dtseries = ci.Cifti2Image(tseries, hdr) out_dtseries.to_filename(out) return out
def test_pconn(): mapping = create_parcel_map((0, 1)) matrix = ci.Cifti2Matrix() matrix.append(mapping) hdr = ci.Cifti2Header(matrix) data = np.random.randn(3, 3) img = ci.Cifti2Image(data, hdr) with InTemporaryDirectory(): ci.save(img, 'test.pconn.nii') img2 = ci.load('test.pconn.nii') assert_true((img2.get_data() == data).all()) assert_equal(img2.header.matrix.get_index_map(0), img2.header.matrix.get_index_map(1)) check_parcel_map(img2.header.matrix.get_index_map(0)) del img2
def test_dscalar(): scalar_map = create_scalar_map((0, )) geometry_map = create_geometry_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(scalar_map) matrix.append(geometry_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 9) img = ci.Cifti2Image(data, hdr) with InTemporaryDirectory(): ci.save(img, 'test.dscalar.nii') img2 = ci.load('test.dscalar.nii') assert_true((img2.get_data() == data).all()) check_scalar_map(img2.header.matrix.get_index_map(0)) check_geometry_map(img2.header.matrix.get_index_map(1)) del img2
def test_plabel(): label_map = create_label_map((0, )) parcel_map = create_parcel_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(label_map) matrix.append(parcel_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 3) img = ci.Cifti2Image(data, hdr) with InTemporaryDirectory(): ci.save(img, 'test.plabel.nii') img2 = ci.load('test.plabel.nii') assert_true((img2.get_data() == data).all()) check_label_map(img2.header.matrix.get_index_map(0)) check_parcel_map(img2.header.matrix.get_index_map(1)) del img2
def test_dconn(): mapping = create_geometry_map((0, 1)) matrix = ci.Cifti2Matrix() matrix.append(mapping) hdr = ci.Cifti2Header(matrix) data = np.random.randn(9, 9) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE') with InTemporaryDirectory(): ci.save(img, 'test.dconn.nii') img2 = nib.load('test.dconn.nii') assert_equal(img2.nifti_header.get_intent()[0], 'ConnDense') assert_true(isinstance(img2, ci.Cifti2Image)) assert_true((img2.get_data() == data).all()) assert_equal(img2.header.matrix.get_index_map(0), img2.header.matrix.get_index_map(1)) check_geometry_map(img2.header.matrix.get_index_map(0)) del img2
def test_pconn(): mapping = create_parcel_map((0, 1)) matrix = ci.Cifti2Matrix() matrix.append(mapping) hdr = ci.Cifti2Header(matrix) data = np.random.randn(4, 4) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_PARCELLATED') with InTemporaryDirectory(): ci.save(img, 'test.pconn.nii') img2 = ci.load('test.pconn.nii') assert img.nifti_header.get_intent()[0] == 'ConnParcels' assert isinstance(img2, ci.Cifti2Image) assert_array_equal(img2.get_fdata(), data) assert img2.header.matrix.get_index_map( 0) == img2.header.matrix.get_index_map(1) check_parcel_map(img2.header.matrix.get_index_map(0)) del img2
def test_plabel(): label_map = create_label_map((0, )) parcel_map = create_parcel_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(label_map) matrix.append(parcel_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 4) img = ci.Cifti2Image(data, hdr) with InTemporaryDirectory(): ci.save(img, 'test.plabel.nii') img2 = ci.load('test.plabel.nii') assert img.nifti_header.get_intent()[0] == 'ConnUnknown' assert isinstance(img2, ci.Cifti2Image) assert_array_equal(img2.get_fdata(), data) check_label_map(img2.header.matrix.get_index_map(0)) check_parcel_map(img2.header.matrix.get_index_map(1)) del img2
def test_matrix(): m = ci.Cifti2Matrix() with pytest.raises(ValueError): m.metadata = ci.Cifti2Parcel() with pytest.raises(TypeError): m[0] = ci.Cifti2Parcel() with pytest.raises(TypeError): m.insert(0, ci.Cifti2Parcel()) mim_none = ci.Cifti2MatrixIndicesMap(None, 'CIFTI_INDEX_TYPE_LABELS') mim_0 = ci.Cifti2MatrixIndicesMap(0, 'CIFTI_INDEX_TYPE_LABELS') mim_1 = ci.Cifti2MatrixIndicesMap(1, 'CIFTI_INDEX_TYPE_LABELS') mim_01 = ci.Cifti2MatrixIndicesMap([0, 1], 'CIFTI_INDEX_TYPE_LABELS') with pytest.raises(ci.Cifti2HeaderError): m.insert(0, mim_none) assert m.mapped_indices == [] h = ci.Cifti2Header(matrix=m) assert m.mapped_indices == [] m.insert(0, mim_0) assert h.mapped_indices == [0] assert h.number_of_mapped_indices == 1 with pytest.raises(ci.Cifti2HeaderError): m.insert(0, mim_0) with pytest.raises(ci.Cifti2HeaderError): m.insert(0, mim_01) m[0] = mim_1 assert list(m.mapped_indices) == [1] m.insert(0, mim_0) assert list(sorted(m.mapped_indices)) == [0, 1] assert h.number_of_mapped_indices == 2 assert h.get_index_map(0) == mim_0 assert h.get_index_map(1) == mim_1 with pytest.raises(ci.Cifti2HeaderError): h.get_index_map(2)
def test_dlabel(): label_map = create_label_map((0, )) geometry_map = create_geometry_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(label_map) matrix.append(geometry_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 10) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE_LABELS') with InTemporaryDirectory(): ci.save(img, 'test.dlabel.nii') img2 = nib.load('test.dlabel.nii') assert img2.nifti_header.get_intent()[0] == 'ConnDenseLabel' assert isinstance(img2, ci.Cifti2Image) assert_array_equal(img2.get_fdata(), data) check_label_map(img2.header.matrix.get_index_map(0)) check_geometry_map(img2.header.matrix.get_index_map(1)) del img2
def test_dpconn(): parcel_map = create_parcel_map((0, )) geometry_map = create_geometry_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(parcel_map) matrix.append(geometry_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 3) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE_PARCELLATED') with InTemporaryDirectory(): ci.save(img, 'test.dpconn.nii') img2 = ci.load('test.dpconn.nii') assert_equal(img2.nifti_header.get_intent()[0], 'ConnDenseParcel') assert_true(isinstance(img2, ci.Cifti2Image)) assert_true((img2.get_data() == data).all()) check_parcel_map(img2.header.matrix.get_index_map(0)) check_geometry_map(img2.header.matrix.get_index_map(1)) del img2
def test_ptseries(): series_map = create_series_map((0, )) parcel_map = create_parcel_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(series_map) matrix.append(parcel_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(13, 3) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_PARCELLATED_SERIES') with InTemporaryDirectory(): ci.save(img, 'test.ptseries.nii') img2 = nib.load('test.ptseries.nii') assert_equal(img2.nifti_header.get_intent()[0], 'ConnParcelSries') assert_true(isinstance(img2, ci.Cifti2Image)) assert_true((img2.get_data() == data).all()) check_series_map(img2.header.matrix.get_index_map(0)) check_parcel_map(img2.header.matrix.get_index_map(1)) del img2
def test_dscalar(): scalar_map = create_scalar_map((0, )) geometry_map = create_geometry_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(scalar_map) matrix.append(geometry_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 9) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE_SCALARS') with InTemporaryDirectory(): ci.save(img, 'test.dscalar.nii') img2 = nib.load('test.dscalar.nii') assert_equal(img2.nifti_header.get_intent()[0], 'ConnDenseScalar') assert_true(isinstance(img2, ci.Cifti2Image)) assert_true((img2.get_data() == data).all()) check_scalar_map(img2.header.matrix.get_index_map(0)) check_geometry_map(img2.header.matrix.get_index_map(1)) del img2
def test_dtseries(): series_map = create_series_map((0, )) geometry_map = create_geometry_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(series_map) matrix.append(geometry_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(13, 10) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE_SERIES') with InTemporaryDirectory(): ci.save(img, 'test.dtseries.nii') img2 = nib.load('test.dtseries.nii') assert_equal(img2.nifti_header.get_intent()[0], 'ConnDenseSeries') assert_true(isinstance(img2, ci.Cifti2Image)) assert_array_equal(img2.get_fdata(), data) check_series_map(img2.header.matrix.get_index_map(0)) check_geometry_map(img2.header.matrix.get_index_map(1)) del img2
def test_pdconn(): geometry_map = create_geometry_map((0, )) parcel_map = create_parcel_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(geometry_map) matrix.append(parcel_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(10, 4) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_PARCELLATED_DENSE') with InTemporaryDirectory(): ci.save(img, 'test.pdconn.nii') img2 = ci.load('test.pdconn.nii') assert img2.nifti_header.get_intent()[0] == 'ConnParcelDense' assert isinstance(img2, ci.Cifti2Image) assert_array_equal(img2.get_fdata(), data) check_geometry_map(img2.header.matrix.get_index_map(0)) check_parcel_map(img2.header.matrix.get_index_map(1)) del img2
def test_pscalar(): scalar_map = create_scalar_map((0, )) parcel_map = create_parcel_map((1, )) matrix = ci.Cifti2Matrix() matrix.append(scalar_map) matrix.append(parcel_map) hdr = ci.Cifti2Header(matrix) data = np.random.randn(2, 4) img = ci.Cifti2Image(data, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_PARCELLATED_SCALAR') with InTemporaryDirectory(): ci.save(img, 'test.pscalar.nii') img2 = nib.load('test.pscalar.nii') assert img2.nifti_header.get_intent()[0] == 'ConnParcelScalr' assert isinstance(img2, ci.Cifti2Image) assert_array_equal(img2.get_fdata(), data) check_scalar_map(img2.header.matrix.get_index_map(0)) check_parcel_map(img2.header.matrix.get_index_map(1)) del img2
def create_img(maps, data): matrix = ci.Cifti2Matrix() matrix.extend(maps) hdr = ci.Cifti2Header(matrix) img = ci.Cifti2Image(data, hdr) return img
def _create_cifti_image(bold_file, label_file, annotation_files, gii_files, volume_target, surface_target, tr): """ Generate CIFTI image in target space Parameters bold_file : 4D BOLD timeseries label_file : label atlas annotation_files : FreeSurfer annotations gii_files : 4D BOLD surface timeseries in GIFTI format volume_target : label atlas space surface_target : gii_files space tr : repetition timeseries Returns out_file : BOLD data as CIFTI dtseries """ label_img = nb.load(label_file) bold_img = resample_to_img(bold_file, label_img) bold_data = bold_img.get_data() timepoints = bold_img.shape[3] label_data = label_img.get_data() # set up CIFTI information series_map = ci.Cifti2MatrixIndicesMap( (0, ), 'CIFTI_INDEX_TYPE_SERIES', number_of_series_points=timepoints, series_exponent=0, series_start=0.0, series_step=tr, series_unit='SECOND') # Create CIFTI brain models idx_offset = 0 brainmodels = [] bm_ts = np.empty((timepoints, 0)) for structure, labels in CIFTI_STRUCT_WITH_LABELS.items(): if labels is None: # surface model model_type = "CIFTI_MODEL_TYPE_SURFACE" # use the corresponding annotation hemi = structure.split('_')[-1] annot = nb.freesurfer.read_annot( annotation_files[hemi == "RIGHT"]) # currently only supports L/R cortex gii = nb.load(gii_files[hemi == "RIGHT"]) # calculate total number of vertices surf_verts = len(annot[0]) # remove medial wall for CIFTI format vert_idx = np.nonzero( annot[0] != annot[2].index(b'unknown'))[0] # extract values across volumes ts = np.array([tsarr.data[vert_idx] for tsarr in gii.darrays]) vert_idx = ci.Cifti2VertexIndices(vert_idx) bm = ci.Cifti2BrainModel(index_offset=idx_offset, index_count=len(vert_idx), model_type=model_type, brain_structure=structure, vertex_indices=vert_idx, n_surface_vertices=surf_verts) bm_ts = np.column_stack((bm_ts, ts)) idx_offset += len(vert_idx) brainmodels.append(bm) else: model_type = "CIFTI_MODEL_TYPE_VOXELS" vox = [] ts = None for label in labels: ijk = np.nonzero(label_data == label) ts = (bold_data[ijk] if ts is None else np.concatenate( (ts, bold_data[ijk]))) vox += [[ijk[0][ix], ijk[1][ix], ijk[2][ix]] for ix, row in enumerate(ts)] bm_ts = np.column_stack((bm_ts, ts.T)) vox = ci.Cifti2VoxelIndicesIJK(vox) bm = ci.Cifti2BrainModel(index_offset=idx_offset, index_count=len(vox), model_type=model_type, brain_structure=structure, voxel_indices_ijk=vox) idx_offset += len(vox) brainmodels.append(bm) volume = ci.Cifti2Volume( bold_img.shape[:3], ci.Cifti2TransformationMatrixVoxelIndicesIJKtoXYZ( -3, bold_img.affine)) brainmodels.append(volume) # create CIFTI geometry based on brainmodels geometry_map = ci.Cifti2MatrixIndicesMap( (1, ), 'CIFTI_INDEX_TYPE_BRAIN_MODELS', maps=brainmodels) # provide some metadata to CIFTI matrix meta = { "target_surface": surface_target, "target_volume": volume_target, } # generate and save CIFTI image matrix = ci.Cifti2Matrix() matrix.append(series_map) matrix.append(geometry_map) matrix.metadata = ci.Cifti2MetaData(meta) hdr = ci.Cifti2Header(matrix) img = ci.Cifti2Image(bm_ts, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE_SERIES') _, out_base, _ = split_filename(bold_file) out_file = "{}.dtseries.nii".format(out_base) ci.save(img, out_file) return os.path.join(os.getcwd(), out_file)
def _create_cifti_image(bold_file, label_file, bold_surfs, annotation_files, tr, targets): """ Generate CIFTI image in target space. Parameters ---------- bold_file : str BOLD volumetric timeseries label_file : str Subcortical label file bold_surfs : list BOLD surface timeseries [L,R] annotation_files : list Surface label files used to remove medial wall tr : float BOLD repetition time targets : tuple or list Surface and volumetric output spaces Returns ------- out : BOLD data saved as CIFTI dtseries """ bold_img = nb.load(bold_file) label_img = nb.load(label_file) if label_img.shape != bold_img.shape[:3]: warnings.warn("Resampling bold volume to match label dimensions") bold_img = resample_to_img(bold_img, label_img) bold_data = bold_img.get_fdata(dtype='float32') timepoints = bold_img.shape[3] label_data = np.asanyarray(label_img.dataobj).astype('int16') # Create brain models idx_offset = 0 brainmodels = [] bm_ts = np.empty((timepoints, 0)) for structure, labels in CIFTI_STRUCT_WITH_LABELS.items(): if labels is None: # surface model model_type = "CIFTI_MODEL_TYPE_SURFACE" # use the corresponding annotation hemi = structure.split('_')[-1] # currently only supports L/R cortex surf = nb.load(bold_surfs[hemi == "RIGHT"]) surf_verts = len(surf.darrays[0].data) if annotation_files[0].endswith('.annot'): annot = nb.freesurfer.read_annot( annotation_files[hemi == "RIGHT"]) # remove medial wall medial = np.nonzero(annot[0] != annot[2].index(b'unknown'))[0] else: annot = nb.load(annotation_files[hemi == "RIGHT"]) medial = np.nonzero(annot.darrays[0].data)[0] # extract values across volumes ts = np.array([tsarr.data[medial] for tsarr in surf.darrays]) vert_idx = ci.Cifti2VertexIndices(medial) bm = ci.Cifti2BrainModel(index_offset=idx_offset, index_count=len(vert_idx), model_type=model_type, brain_structure=structure, vertex_indices=vert_idx, n_surface_vertices=surf_verts) idx_offset += len(vert_idx) bm_ts = np.column_stack((bm_ts, ts)) else: model_type = "CIFTI_MODEL_TYPE_VOXELS" vox = [] ts = None for label in labels: ijk = np.nonzero(label_data == label) if ijk[0].size == 0: # skip label if nothing matches continue ts = (bold_data[ijk] if ts is None else np.concatenate( (ts, bold_data[ijk]))) vox += [[ijk[0][ix], ijk[1][ix], ijk[2][ix]] for ix, row in enumerate(ts)] vox = ci.Cifti2VoxelIndicesIJK(vox) bm = ci.Cifti2BrainModel(index_offset=idx_offset, index_count=len(vox), model_type=model_type, brain_structure=structure, voxel_indices_ijk=vox) idx_offset += len(vox) bm_ts = np.column_stack((bm_ts, ts.T)) # add each brain structure to list brainmodels.append(bm) # add volume information brainmodels.append( ci.Cifti2Volume( bold_img.shape[:3], ci.Cifti2TransformationMatrixVoxelIndicesIJKtoXYZ( -3, bold_img.affine))) # generate Matrix information series_map = ci.Cifti2MatrixIndicesMap((0, ), 'CIFTI_INDEX_TYPE_SERIES', number_of_series_points=timepoints, series_exponent=0, series_start=0.0, series_step=tr, series_unit='SECOND') geometry_map = ci.Cifti2MatrixIndicesMap((1, ), 'CIFTI_INDEX_TYPE_BRAIN_MODELS', maps=brainmodels) # provide some metadata to CIFTI matrix meta = { "surface": targets[0], "volume": targets[1], } # generate and save CIFTI image matrix = ci.Cifti2Matrix() matrix.append(series_map) matrix.append(geometry_map) matrix.metadata = ci.Cifti2MetaData(meta) hdr = ci.Cifti2Header(matrix) img = ci.Cifti2Image(bm_ts, hdr) img.nifti_header.set_intent('NIFTI_INTENT_CONNECTIVITY_DENSE_SERIES') out_file = "{}.dtseries.nii".format(split_filename(bold_file)[1]) ci.save(img, out_file) return os.path.join(os.getcwd(), out_file)
def _create_dtseries_cifti(timepoints, models): """Create a dense timeseries CIFTI-2 file""" import nibabel.cifti2 as ci def create_series_map(): return ci.Cifti2MatrixIndicesMap((0, ), 'CIFTI_INDEX_TYPE_SERIES', number_of_series_points=timepoints, series_exponent=0, series_start=0, series_step=1, series_unit='SECOND') def create_geometry_map(): index_offset = 0 brain_models = [] timeseries = np.zeros((timepoints, 0)) for name, data in models: if "CORTEX" in name: model_type = "CIFTI_MODEL_TYPE_SURFACE" attr = "vertex_indices" indices = ci.Cifti2VertexIndices(np.arange(len(data))) else: model_type = "CIFTI_MODEL_TYPE_VOXELS" attr = "voxel_indices_ijk" indices = ci.Cifti2VoxelIndicesIJK(np.arange(len(data))) bm = ci.Cifti2BrainModel( index_offset=index_offset, index_count=len(data), model_type=model_type, brain_structure=name, ) setattr(bm, attr, indices) index_offset += len(data) brain_models.append(bm) timeseries = np.column_stack((timeseries, data.T)) brain_models.append( ci.Cifti2Volume( (4, 4, 4), ci.Cifti2TransformationMatrixVoxelIndicesIJKtoXYZ( -3, np.eye(4)), )) return ci.Cifti2MatrixIndicesMap( (1, ), "CIFTI_INDEX_TYPE_BRAIN_MODELS", maps=brain_models, ), timeseries matrix = ci.Cifti2Matrix() series_map = create_series_map() geometry_map, ts = create_geometry_map() matrix.append(series_map) matrix.append(geometry_map) hdr = ci.Cifti2Header(matrix) img = ci.Cifti2Image(dataobj=ts, header=hdr) img.nifti_header.set_intent("NIFTI_INTENT_CONNECTIVITY_DENSE_SERIES") out_file = Path("test.dtseries.nii").absolute() ci.save(img, out_file) return out_file