예제 #1
0
파일: FROG.py 프로젝트: valette/FROG
def flipAndSaveToRAS(filename):

    #Recover the image object
    imageObj = nib.load(filename)

    #Get the current orientation
    CurrentOrientation = nib.aff2axcodes(imageObj.affine)
    print("The current orientation is : ", CurrentOrientation)

    #Check if the current orientation is already RAS+
    if CurrentOrientation == ('R', 'A', 'S'):

        print(
            "Image already recorded into the RAS+ orientation, nothing to do")
        return filename

    else:
        #Flip the image to RAS
        flippedImage = nib.as_closest_canonical(imageObj)

        ##Check the new orientation
        NewOrientation = nib.aff2axcodes(flippedImage.affine)

        #Set Qcode to 1 that the Qform matrix can be used into the further processing
        flippedImage.header['qform_code'] = 1

        #Save the flipped image
        nib.save(flippedImage, RASFile)

        print("The new orientation is now : ", NewOrientation)
        return RASFile
예제 #2
0
    def reorient_images(self):
        if (self.reorient_flag):
            print(
                "Reorient flag is set to true, Hence reorienting both images to Right Anterior Superior"
            )
            canonical_img_1 = nb.as_closest_canonical(self.orig_nii_stationary)
            print(" ============= ============== ===================")
            print("orientation changed  t1 affine: {}".format(
                canonical_img_1.affine))
            print(" ============= ============== ===================")
            print("orientation changed  t1 : {}".format(
                nb.aff2axcodes(canonical_img_1.affine)))
            print(" ============= ============== ===================")
            canonical_img_2 = nb.as_closest_canonical(self.orig_nii_moving)
            print(" ============= ============== ===================")
            print("orientation changed  t2 affine: {}".format(
                canonical_img_2.affine))
            print(" ============= ============== ===================")
            print("orientation changed  t1 : {}".format(
                nb.aff2axcodes(canonical_img_2.affine)))
            print(" ============= ============== ===================")

            self.canonical_img_1 = canonical_img_1
            self.canonical_img_2 = canonical_img_2
            return self.canonical_img_1, self.canonical_img_2
        else:
            print(" ============= ============== ===================")
            print("Not reorienting the images as reorient flag is false")
            print(" ============= ============== ===================")
            self.canonical_img_1 = orig_nii_stationary
            self.canonical_img_2 = orig_nii_moving
            return self.canonical_img_1, self.canonical_img_2
예제 #3
0
def _reorient_image(img, *, target_img=None, orientation=None):
    """
    Coerce an image to a target orientation.

    .. note::
        Only RAS -> LAS conversion is currently supported

    Parameters
    ----------
    img : :obj:`SpatialImage`
        image to be reoriented
    target_img : :obj:`SpatialImage`, optional
        target in desired orientation
    orientation : :obj:`str` or :obj:`tuple`, optional
        desired orientation, if no target image is provided

    .. testsetup::
    >>> img = nb.load(Path(test_data) / 'testRobustMNINormalizationRPTMovingWarpedImage.nii.gz')
    >>> las_img = img.as_reoriented([[0, -1], [1, 1], [2, 1]])

    Examples
    --------
    >>> nimg = _reorient_image(img, target_img=img)
    >>> nb.aff2axcodes(nimg.affine)
    ('R', 'A', 'S')

    >>> nimg = _reorient_image(img, target_img=las_img)
    >>> nb.aff2axcodes(nimg.affine)
    ('L', 'A', 'S')

    >>> nimg = _reorient_image(img, orientation='LAS')
    >>> nb.aff2axcodes(nimg.affine)
    ('L', 'A', 'S')

    >>> _reorient_image(img, orientation='LPI')
    Traceback (most recent call last):
      ...
    NotImplementedError: Cannot reorient ...

    >>> _reorient_image(img)
    Traceback (most recent call last):
      ...
    RuntimeError: No orientation ...

    """
    orient0 = nb.aff2axcodes(img.affine)
    if target_img is not None:
        orient1 = nb.aff2axcodes(target_img.affine)
    elif orientation is not None:
        orient1 = tuple(orientation)
    else:
        raise RuntimeError("No orientation to reorient to!")

    if orient0 == orient1:  # already in desired orientation
        return img
    elif orient0 == tuple("RAS") and orient1 == tuple("LAS"):  # RAS -> LAS
        return img.as_reoriented([[0, -1], [1, 1], [2, 1]])
    else:
        raise NotImplementedError("Cannot reorient {0} to {1}.".format(
            orient0, orient1))
예제 #4
0
    def _run_interface(self, runtime):
        dsi_studio_file = self.inputs.dsi_studio_nifti
        new_file = fname_presuffix(dsi_studio_file,
                                   suffix="fixhdr",
                                   newpath=runtime.cwd)
        dsi_img = nb.load(dsi_studio_file)
        correct_img = nb.load(self.inputs.correct_header_nifti)

        new_axcodes = nb.aff2axcodes(correct_img.affine)
        input_axcodes = nb.aff2axcodes(dsi_img.affine)

        # Is the input image oriented how we want?
        if not input_axcodes == new_axcodes:
            # Re-orient
            input_orientation = nb.orientations.axcodes2ornt(input_axcodes)
            desired_orientation = nb.orientations.axcodes2ornt(new_axcodes)
            transform_orientation = nb.orientations.ornt_transform(
                input_orientation, desired_orientation)
            reoriented_img = dsi_img.as_reoriented(transform_orientation)

        else:
            reoriented_img = dsi_img

        # No matter what, still use the correct affine
        nb.Nifti1Image(reoriented_img.get_data(),
                       correct_img.affine).to_filename(new_file)
        self._results['out_file'] = new_file

        return runtime
    def read_input_images(self):
        orig_nii_stationary = nb.load(self.stationary_image_file_path)
        orig_nii_moving = nb.load(self.moving_image_file_path)

        orig_nii_stationary_voxel_dim = orig_nii_stationary.header["pixdim"][1:4]
        orig_nii_moving_voxel_dim = orig_nii_moving.header["pixdim"][1:4]
        orig_nii_stationary_centre = [float(orig_nii_stationary.header["qoffset_x"]), float(orig_nii_stationary.header["qoffset_y"]), float(orig_nii_stationary.header["qoffset_z"])]
        orig_nii_moving_centre = [float(orig_nii_moving.header["qoffset_x"]), float(orig_nii_moving.header["qoffset_y"]), float(orig_nii_moving.header["qoffset_z"])]


        print(" ============= ============== ===================")
        print("Image 1 voxel resolution before resampling: {}".format(orig_nii_stationary_voxel_dim))
        print(" ============= ============== ===================")
        print("Image 2 voxel resolution before resampling: {}".format(orig_nii_moving_voxel_dim))
        print(" ============= ============== ===================")
        print("Image 1 centre before resampling: {}".format(orig_nii_stationary_centre))
        print(" ============= ============== ===================")
        print("Image 2 centre before resampling: {}".format(orig_nii_moving_centre))   
        print(" ============= ============== ===================")
        print("original t1 affine: {}".format(orig_nii_stationary.affine))
        print(" ============= ============== ===================")
        print("original t2 affine: {}".format(orig_nii_moving.affine))
        print(" ============= ============== ===================")
        print("original t1 Orientation: {}".format(nb.aff2axcodes(orig_nii_stationary.affine)))
        print(" ============= ============== ===================")
        print("original t2 Orientation: {}".format(nb.aff2axcodes(orig_nii_moving.affine)))
        print(" ============= ============== ===================")

        self.orig_nii_stationary = orig_nii_stationary
        self.orig_nii_moving = orig_nii_moving

        return self.orig_nii_stationary, self.orig_nii_moving;
def test_MNI_reorient():
    # load up the image with the incorrect orientation
    bad_img = nib.load(bad_orientation_file)
    # get the affine information from the image
    bad_affine = bad_img.affine
    # get the orientation code from the affine information
    bad_orientation = nib.aff2axcodes(bad_affine)

    # run the reorientation on the file with the bad orientation to create
    # a file with the correct orientation
    #if isfile(out_file_name):
    #    os.remove(out_file_name)
    #    MNI_reorient(bad_orientation_file, out_file_name)

    # load up the image data of the out file created in the previous step
    out_file_img = nib.load(out_file_name)
    # get the affine information from the out file image
    out_file_affine = out_file_img.affine
    # get the orientation code from the affine information
    out_file_orientation = nib.aff2axcodes(out_file_affine)

    # assert that the original image with the incorrect orientation actually does
    # have a different orientation than what is desired
    assert (bad_orientation != MNI_axis_codes)
    # assert that the newly created out file has had its orientation swapped
    # to the desired orientation
    assert (out_file_orientation == MNI_axis_codes)
예제 #7
0
def getAxesForTransform(startingDicomFile, cfg):
    """ Load one example file """
    nifti_object = nib.load(cfg.ref_BOLD)
    target_orientation = nib.aff2axcodes(nifti_object.affine)
    dicom_object = getLocalDicomData(cfg, startingDicomFile)
    dicom_object = dicomreaders.mosaic_to_nii(dicom_object)
    dicom_orientation = nib.aff2axcodes(dicom_object.affine)
    return target_orientation, dicom_orientation  # from here you can save and load it so getTransform is hard coded --you only need to run this once
예제 #8
0
 def get_ornt(self):
     """Returns current orientation based on the affine and coordinate system"""
     if self.coord_sys == 'nib':
         ornt_tup = aff2axcodes(self.affine)
     elif self.coord_sys == 'itk':
         ornt_tup = inv_axcodes(aff2axcodes(convert_affine(self.affine)))
     else:
         raise ValueError(f'Invalid coord_sys: "{self.coord_sys}"')
     ornt_str = ''.join(ornt_tup)
     return ornt_str
예제 #9
0
def print_orien(example_file):
    img = nib.load(example_file)
    # Here is the affine (to two digits decimal precision):
    np.set_printoptions(precision=2, suppress=True)
    # print(f"img.affine={img.affine}")
    # What are the orientations of the voxel axes here?
    # Nibabel has a routine to tell you, called aff2axcodes.
    orientation = nib.aff2axcodes(img.affine)
    print(f"orientation of {example_file} = {orientation}")
    return nib.aff2axcodes(img.affine)
예제 #10
0
def main():
    parser = _build_args_parser()
    args = parser.parse_args()

    assert_inputs_exist(parser, args.input, args.ref)
    assert_outputs_exist(parser, args, args.output)
    if args.enforce_dimensions and not args.ref:
        parser.error("Cannot enforce dimensions without a reference image")

    if args.verbose:
        logging.basicConfig(level=logging.DEBUG)

    logging.debug('Loading Raw data from %s', args.input)

    img = nib.load(args.input)
    data = img.get_data()
    affine = img.get_affine()
    original_zooms = img.get_header().get_zooms()[:3]

    if args.ref:
        ref_img = nib.load(args.ref)
        new_zooms = ref_img.header.get_zooms()[:3]
    elif args.resolution:
        new_zooms = [args.resolution] * 3
    elif args.iso_min:
        min_zoom = min(original_zooms)
        new_zooms = (min_zoom, min_zoom, min_zoom)

    logging.debug('Data shape: %s', data.shape)
    logging.debug('Data affine: %s', affine)
    logging.debug('Data affine setup: %s', nib.aff2axcodes(affine))
    logging.debug('Resampling data to %s with mode %s', new_zooms, args.interp)

    data2, affine2 = reslice(data, affine, original_zooms, new_zooms,
                             interp_code_to_order(args.interp))

    logging.debug('Resampled data shape: %s', data2.shape)
    logging.debug('Resampled data affine: %s', affine2)
    logging.debug('Resampled data affine setup: %s', nib.aff2axcodes(affine2))
    logging.debug('Saving resampled data to %s', args.output)

    if args.enforce_dimensions:
        computed_dims = data2.shape
        ref_dims = ref_img.shape[:3]
        if computed_dims != ref_dims:
            fix_dim_volume = np.zeros(ref_dims)
            x_dim = min(computed_dims[0], ref_dims[0])
            y_dim = min(computed_dims[1], ref_dims[1])
            z_dim = min(computed_dims[2], ref_dims[2])

            fix_dim_volume[:x_dim, :y_dim, :z_dim] = \
                data2[:x_dim, :y_dim, :z_dim]
            data2 = fix_dim_volume

    nib.save(nib.Nifti1Image(data2, affine2), args.output)
예제 #11
0
def reorient_image(input_path):
    input_image = nib.load(input_path)

    print(nib.aff2axcodes(input_image.affine))

    output_image = nib.as_closest_canonical(input_image)
    output_path = input_path.split('.')[0] + '_reoriented.nii.gz'
    print(output_path)

    print(nib.aff2axcodes(output_image.affine))

    nib.save(output_image, output_path)
예제 #12
0
 def _resample(mask, target_affine, target_shape):
     if target_affine is not None and target_shape is not None:
         mask = image.resample_img(mask, target_affine=target_affine, target_shape=target_shape, interpolation='nearest')
         # check orientations
         orient_data = ''.join(nib.aff2axcodes(target_affine))
         orient_roi = ''.join(nib.aff2axcodes(mask.affine))
         if not orient_roi == orient_data:
             msg = 'Orientation of mask and data are not the same: ' + \
                   orient_roi + ' (mask) vs. ' + orient_data + ' (data)'
             logger.error(msg)
             raise ValueError(msg)
     return mask
예제 #13
0
 def test_orntd_2d(self):
     data = {
         "seg": np.ones((2, 1, 3)),
         "img": np.ones((2, 1, 3)),
         "seg.affine": np.eye(4),
         "img.affine": np.eye(4)
     }
     ornt = Orientationd(keys=("img", "seg"), axcodes="PLI")
     res = ornt(data)
     np.testing.assert_allclose(res["img"].shape, (2, 3, 1))
     code = nib.aff2axcodes(res["seg.affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("P", "L", "S"))
     code = nib.aff2axcodes(res["img.affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("P", "L", "S"))
예제 #14
0
 def test_orntd_1d(self):
     data = {
         "seg": np.ones((2, 3)),
         "img": np.ones((2, 3)),
         "seg_meta_dict": {"affine": np.eye(4)},
         "img_meta_dict": {"affine": np.eye(4)},
     }
     ornt = Orientationd(keys=("img", "seg"), axcodes="L")
     res = ornt(data)
     np.testing.assert_allclose(res["img"].shape, (2, 3))
     code = nib.aff2axcodes(res["seg_meta_dict"]["affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("L", "A", "S"))
     code = nib.aff2axcodes(res["img_meta_dict"]["affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("L", "A", "S"))
예제 #15
0
 def test_orntd_1d(self):
     data = {
         'seg': np.ones((2, 3)),
         'img': np.ones((2, 3)),
         'seg.affine': np.eye(4),
         'img.affine': np.eye(4)
     }
     ornt = Orientationd(keys=('img', 'seg'), axcodes='L')
     res = ornt(data)
     np.testing.assert_allclose(res['img'].shape, (2, 3))
     code = nib.aff2axcodes(res['seg.affine'], ornt.ornt_transform.labels)
     self.assertEqual(code, ('L', 'A', 'S'))
     code = nib.aff2axcodes(res['img.affine'], ornt.ornt_transform.labels)
     self.assertEqual(code, ('L', 'A', 'S'))
예제 #16
0
 def test_orntd_canonical(self):
     data = {
         "seg": np.ones((2, 1, 2, 3)),
         "img": np.ones((2, 1, 2, 3)),
         "seg.affine": np.eye(4),
         "img.affine": np.eye(4),
     }
     ornt = Orientationd(keys=("img", "seg"), as_closest_canonical=True)
     res = ornt(data)
     np.testing.assert_allclose(res["img"].shape, (2, 1, 2, 3))
     np.testing.assert_allclose(res["seg"].shape, (2, 1, 2, 3))
     code = nib.aff2axcodes(res["seg.affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("R", "A", "S"))
     code = nib.aff2axcodes(res["img.affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("R", "A", "S"))
예제 #17
0
 def resampleNiftifile(self, ):
     for root, dirs, files in os.walk(self.resampling_folder):
         print()
         print("========= ============ =========")
         for fl in files:
             if (fl.endswith(".nii.gz")):
                 basename = fl[0:-7]
                 img_nb = nb.load(os.path.join(self.resampling_folder, fl))
                 img_np = img_nb.dataobj
                 target_shape = np.array((256, 256, 256))
                 new_resolution = [
                     0.5,
                 ] * 3
                 new_affine = np.zeros((4, 4))
                 new_affine[:3, :3] = np.diag(new_resolution)
                 new_affine[:3, 3] = target_shape * new_resolution / 2. * -1
                 new_affine[3, 3] = 1.0
                 new_affine
                 interim_nb = nl.image.resample_img(
                     img_nb,
                     target_affine=new_affine,
                     target_shape=target_shape,
                     interpolation='nearest')
                 print("======== Before ==========")
                 print("Shape and max intensity of img is {} and {}".format(
                     img_np.shape, np.max(img_np)))
                 print("Voxel resolution: {}".format(
                     img_nb.header["pixdim"][1:4]))
                 print("Orientation: {}".format(
                     nb.aff2axcodes(img_nb.affine)))
                 print("Affine: {}".format(img_nb.affine))
                 interim_nb.to_filename(
                     os.path.join(self.resampling_folder,
                                  basename + "_upsampled.nii.gz"))
                 tmp_nb = nb.load(
                     os.path.join(self.resampling_folder,
                                  basename + "_upsampled.nii.gz"))
                 tmp_np = tmp_nb.dataobj
                 print("========= After ===========")
                 print()
                 print("Shape and max intensity of img is {} and {}".format(
                     tmp_np.shape, np.max(tmp_np)))
                 print("Voxel resolution: {}".format(
                     tmp_nb.header["pixdim"][1:4]))
                 print("Orientation: {}".format(
                     nb.aff2axcodes(tmp_nb.affine)))
                 print("Affine: {}".format(tmp_nb.affine))
                 print()
예제 #18
0
def load_nifti(filepath):
    """Load a Nifti file.
    # Arguments
        filepath: The file path of the Nifti image to load.
    # Returns
        A four dimensional array where the last dimension are the color
        channels (rgb). If the Nifti only contains gray values then all
        channels have the same value for one voxel."""
    img = nib.load(filepath)
    img_data = img.get_data()

    # make sure volume orientation is LPS (DICOM default)
    orientation = ''.join(nib.aff2axcodes(img.affine))
    if not orientation == 'LPS':
        if orientation == 'LAS':
            img_data = np.flip(img_data, 1)
        elif orientation == 'RAS':
            img_data = np.flip(img_data, 0)
            img_data = np.flip(img_data, 1)
        else:
            raise ValueError('Unsupported orientation of Nifti file: ' +
                         orientation)

    # add a channels dimension (if not already present)
    if len(img_data.shape) < 4:
        img_data.shape += (1,)

    return img_data
예제 #19
0
    def orientation(self):
        """tuple[str]: Image orientation in standard orientation format.

        See orientation.py for more information on conventions.
        """
        nib_orientation = nib.aff2axcodes(self._affine)
        return stdo.orientation_nib_to_standard(nib_orientation)
def read(path='',
         b_reorient=False,
         orientation=(('R', 'L'), ('P', 'A'), ('I', 'S'))):
    """
     Read the nifti file and switch to a given orientation

     orientation defaults to std LAS (radiological) - RAS (neurological)
    """

    if not os.path.isfile(path):
        raise ValueError('Provided path is not a valid file')

    image_nii = nib.load(path)
    if b_reorient:
        # switch to given orientation (http://nipy.org/nibabel/image_orientation.html)
        axcodes = nib.aff2axcodes(image_nii.affine)
        orientations = nib.orientations.axcodes2ornt(axcodes, orientation)
        image = image_nii.get_data()
        image = nib.apply_orientation(image, orientations)
        header = image_nii.header
        img_shape = image.shape

    else:

        image = image_nii.get_data()
        img_shape = image.shape

    header = image_nii.header
    print(f'preprocessed data shape={img_shape}')
    return image, header, img_shape
예제 #21
0
def _format_volume_to_header(volume: MedicalVolume) -> MedicalVolume:
    """Reformats the volume according to its header.

    Args:
        volume (MedicalVolume): The volume to reformat.
            Must be 3D and have headers of shape (1, 1, volume.shape[2]).

    Returns:
        MedicalVolume: The reformatted volume.
    """
    headers = volume.headers()
    assert headers.shape == (1, 1, volume.shape[2])

    affine = to_RAS_affine(headers.flatten())
    orientation = stdo.orientation_nib_to_standard(nib.aff2axcodes(affine))

    # Currently do not support mismatch in scanner_origin.
    if tuple(affine[:3, 3]) != volume.scanner_origin:
        raise ValueError(
            "Scanner origin mismatch. "
            "Currently we do not handle mismatch in scanner origin "
            "(i.e. cannot flip across axis)")

    volume = volume.reformat(orientation)
    assert volume.headers().shape == (1, 1, volume.shape[2])
    return volume
예제 #22
0
def _get_mgdm_orientation(affine, mgdm):
    '''
    Transforms nibabel affine information into
    orientation and slice order that MGDM understands
    '''
    orientation = nb.aff2axcodes(affine)
    # set mgdm slice order
    if orientation[-1] == "I" or orientation[-1] == "S":
        sliceorder = mgdm.AXIAL
    elif orientation[-1] == "L" or orientation[-1] == "R":
        sliceorder = mgdm.SAGITTAL
    else:
        sliceorder = mgdm.CORONAL

    # set mgdm orientations
    if "L" in orientation:
        LR = mgdm.R2L
    elif "R" in orientation:
        LR = mgdm.L2R  # flipLR = True
    if "A" in orientation:
        AP = mgdm.P2A  # flipAP = True
    elif "P" in orientation:
        AP = mgdm.A2P
    if "I" in orientation:
        IS = mgdm.S2I  # flipIS = True
    elif "S" in orientation:
        IS = mgdm.I2S

    return sliceorder, LR, AP, IS
예제 #23
0
def read_nifti_series(filename):
    proxy_img = nib.load(filename)
    # less efficent get image data into memory all at once
    # image_data = proxy_img.get_fdata()

    hdr = proxy_img.header
    image_shape = hdr.get_data_shape()
    image_dim = len(image_shape)
    num_images = 1
    if image_dim >= 3:
        num_images = image_shape[2]

    (m, b) = hdr.get_slope_inter()
    axcodes = nib.aff2axcodes(proxy_img.affine)
    # TODO-- There does not seem to be a good NIfti method to obtain the input volume's labels?
    if ((axcodes != ('R', 'A', 'S')) and (axcodes != ('L', 'A', 'S'))
            and (axcodes != ('L', 'P', 'S'))):
        print(
            "Input NIfti series is in unsupported orientation.  Please convert to RAS, LAS, or LPS orientation:"
            + filename)
        sys.exit(1)

    # specifiy LPS for DICOM
    # https://nipy.org/nibabel/dicom/dicom_orientation.html, if we want to apply the formula above to array indices in pixel_array, we first have to apply a column / row flip to the indices.
    codes = ('L', 'P', 'S')
    labels = (('A', 'P'), ('R', 'L'), ('I', 'S'))
    orients = orientations.axcodes2ornt(codes, labels)
    img_reorient = proxy_img.as_reoriented(orients)
    hdr = img_reorient.header
    # We reset m and b here ourselves for downstream rescale/slope
    b = 0
    m = 1
    return img_reorient, hdr, num_images, b, m, axcodes
예제 #24
0
def read_nii_from_path(config, path=None):
    """
    Read nii file from the path
    :param config: type dict: config parameter
    :param path: path to nii.file
    :return: img_arr : type ndarray:  3D array from nii file
    :return: img.header: type nibabel.nifti1.Nifti1Header: header of nifti image
    :return: img.affine: type ndarray, affine info of nifti image
    """
    print(path)
    img = nib.load(path)
    axcodes = tuple(nib.aff2axcodes(img.affine))
    img_arr = img.get_fdata()
    if config['new_orientation']:
        img_arr = nifti_reorientation(
            np.array(img_arr), axcodes,
            tuple(config['new_orientation']))  #('P','L','S')
    if config['rescale']:
        slope = config['rescale'] / (np.max(img_arr) + 1e-16)
        img_arr = img_arr / (np.max(img_arr) + 1e-16) * config['rescale']
        img.header.set_slope_inter(slope, inter=0)
    elif config['scale']:
        print(config['scale'])
        img_arr = img_arr * config['scale']
    else:
        pass
    return img_arr, img.header, img.affine
예제 #25
0
 def _resample(mask, target_affine, target_shape):
     if target_affine is not None and target_shape is not None:
         mask = image.resample_img(
             mask,
             target_affine=target_affine,
             target_shape=target_shape,
             interpolation="nearest",
         )
         # check orientations
         orient_data = "".join(nib.aff2axcodes(target_affine))
         orient_roi = "".join(nib.aff2axcodes(mask.affine))
         if not orient_roi == orient_data:
             logger.error(
                 "Orientation of mask and data are not the same: " +
                 orient_roi + " (mask) vs. " + orient_data + " (data)")
     return mask
예제 #26
0
def vtk_to_trk_converter(tract_in, tract_out, reference_volume=None):
    
    if not tract_in.endswith('vtk'):
        raise ValueError("Sorry, we only work with vtk files as input")

    if not tract_out.endswith('trk'):
        raise ValueError("Sorry, we only work with trk files as output")

    tractography = tractography_from_vtk_file(tract_in)

    # ADD metadata to the TRK format
    hdr_dict = None

    if not (reference_volume is None):
        ref = nibabel.load(reference_volume)

        hdr_dict = {'dimensions': ref.shape[:3],
                    'voxel_sizes': ref.header.get_zooms()[:3],
                    'voxel_to_rasmm': ref.affine,
                    'voxel_order': "".join(nibabel.aff2axcodes(ref.affine))}

    tract = nibabel.streamlines.Tractogram(tractography.tracts(),
                                           affine_to_rasmm=np.eye(4))
    trk_file = nibabel.streamlines.TrkFile(tract, hdr_dict)
    trk_file.save(tract_out)
예제 #27
0
 def orientation(self):
     """
     Get the closest orientation in standard orientation coordinates
     :return: a tuple of standard orientation coordinates (see orientation.py for more information on format)
     """
     nib_orientation = nib.aff2axcodes(self._affine)
     return stdo.orientation_nib_to_standard(nib_orientation)
예제 #28
0
 def test_orntd_no_metadata(self):
     data = {"seg": np.ones((2, 1, 2, 3))}
     ornt = Orientationd(keys="seg", axcodes="RAS")
     res = ornt(data)
     np.testing.assert_allclose(res["seg"].shape, (2, 1, 2, 3))
     code = nib.aff2axcodes(res["seg_meta_dict"]["affine"], ornt.ornt_transform.labels)
     self.assertEqual(code, ("R", "A", "S"))
예제 #29
0
    def __call__(self, data):
        """
        :param data: Data dictionary to be processed by this transform
        :type data: dict
        :return: Updated data dictionary
        :rtype: dict
        """
        for field in self.fields:

            complete_file_path = os.path.join(self.data_dir, data[field])

            assert complete_file_path[0:5] == 's3://'

            filename = get_file_from_s3(self.s3_client, complete_file_path, self.cache)

            img = nib.load(filename)

            if self.canonical:
                img = nib.as_closest_canonical(img)

            data[field] = img
            data[field + '_affines'] = img.affine
            data[field + '_orientations'] = nib.aff2axcodes(img.affine)

        return data
예제 #30
0
def split_seg_sides(in_bin_seg_file, out_seg_file):
    """
    Split segmentation into Right/Left
    :param in_bin_seg_file: input binary segmentation
    :param out_seg_file: output segmentation with both sides
    """
    in_bin_seg = nib.load(in_bin_seg_file)
    mid = int(in_bin_seg.shape[0] / 2)
    out_seg = in_bin_seg.get_data().copy()
    seg_ort = nib.aff2axcodes(in_bin_seg.affine)

    r_orient_nii = ('R', 'A', 'S')
    l_orient_nii = ('L', 'A', 'S')

    if seg_ort == l_orient_nii:
        # new = in_bin_seg.get_data()[mid:-1, :, :]
        # new[new == 1] = 2
        # out_seg[mid:-1, :, :] = 2

        out_seg[0:mid, :, :] = 0
        out_seg = out_seg + in_bin_seg.get_data()
    elif seg_ort == r_orient_nii:
        # new = in_bin_seg.get_data()[0:mid, :, :]
        # new[new == 1] = 2
        # out_seg[0:mid, :, :] = 2

        out_seg[mid:-1, :, :] = 0
        out_seg = out_seg + in_bin_seg.get_data()

    print(out_seg.max())
    out_seg_nii = nib.Nifti1Image(out_seg, in_bin_seg.affine)

    nib.save(out_seg_nii, out_seg_file)
예제 #31
0
def spikes_mask(in_file, in_mask=None, out_file=None):
    """
    Utility function to calculate a mask in which check
    for :abbr:`EM (electromagnetic)` spikes.
    """

    import os.path as op
    import nibabel as nb
    import numpy as np
    from nilearn.image import mean_img
    from nilearn.plotting import plot_roi
    from scipy import ndimage as nd

    if out_file is None:
        fname, ext = op.splitext(op.basename(in_file))
        if ext == '.gz':
            fname, ext2 = op.splitext(fname)
            ext = ext2 + ext
        out_file = op.abspath('{}_spmask{}'.format(fname, ext))
        out_plot = op.abspath('{}_spmask.pdf'.format(fname))

    in_4d_nii = nb.load(in_file)
    orientation = nb.aff2axcodes(in_4d_nii.affine)

    if in_mask:
        mask_data = nb.load(in_mask).get_data()
        a = np.where(mask_data != 0)
        bbox = np.max(a[0]) - np.min(a[0]), np.max(a[1]) - \
            np.min(a[1]), np.max(a[2]) - np.min(a[2])
        longest_axis = np.argmax(bbox)

        # Input here is a binarized and intersected mask data from previous section
        dil_mask = nd.binary_dilation(
            mask_data, iterations=int(mask_data.shape[longest_axis] / 9))

        rep = list(mask_data.shape)
        rep[longest_axis] = -1
        new_mask_2d = dil_mask.max(axis=longest_axis).reshape(rep)

        rep = [1, 1, 1]
        rep[longest_axis] = mask_data.shape[longest_axis]
        new_mask_3d = np.logical_not(np.tile(new_mask_2d, rep))
    else:
        new_mask_3d = np.zeros(in_4d_nii.shape[:3]) == 1

    if orientation[0] in ['L', 'R']:
        new_mask_3d[0:2, :, :] = True
        new_mask_3d[-3:-1, :, :] = True
    else:
        new_mask_3d[:, 0:2, :] = True
        new_mask_3d[:, -3:-1, :] = True

    mask_nii = nb.Nifti1Image(new_mask_3d.astype(np.uint8), in_4d_nii.get_affine(),
                              in_4d_nii.get_header())
    mask_nii.to_filename(out_file)

    plot_roi(mask_nii, mean_img(in_4d_nii), output_file=out_plot)
    return out_file, out_plot
예제 #32
0
파일: datamodel.py 프로젝트: BNUCNL/FreeROI
    def get_axcodes(self):
        """Get codes for voxel axis derived from affine.

        i.e., ('R', 'A', 'S')
        """
        if isinstance(self._affine, np.ndarray):
            return aff2axcodes(self._affine)
        else:
            return None
예제 #33
0
def get_affine_orientation_slice(a):
    # get the orientation of the affine, and the slice order
    import nibabel as nb
    ori=nb.aff2axcodes(a)
    if ori[-1] == "I" or ori[-1] == "S":
        slc = "AXIAL"
    elif ori[-1] == "L" or ori[-1] == "R":
        slc="SAGITTAL"
    else:
        slc="CORONAL"
    return ori, slc
예제 #34
0
def load_nifti(fname, verbose=False):
    img = nib.load(fname)
    data = img.get_data()
    affine = img.get_affine()
    if verbose:
        print(fname)
        print(data.shape)
        print(affine)
        print(img.get_header().get_zooms()[:3])
        print(nib.aff2axcodes(affine))
        print
    return data, affine
예제 #35
0
    def original_axcodes(self):
        """
        axcodes info from the image header
        more info: http://nipy.org/nibabel/image_orientation.html

        :return: a tuple of axcodes, with each element as axcodes
            of an image file
        """
        try:
            return tuple(nib.aff2axcodes(affine)
                         for affine in self.original_affine)
        except IndexError:
            tf.logging.fatal('unknown affine in header %s: %s',
                             self.file_path, self.original_affine)
            raise
예제 #36
0
파일: image.py 프로젝트: MarcCote/dipy
def load_nifti(fname, return_img=False, return_voxsize=False,
               return_coords=False):
    img = nib.load(fname)
    data = img.get_data()
    vox_size = img.header.get_zooms()[:3]
    
    ret_val = [data, img.affine]

    if return_img:
        ret_val.append(img)
    if return_voxsize:
        ret_val.append(vox_size)
    if return_coords:
        ret_val.append(nib.aff2axcodes(img.affine))

    return tuple(ret_val)
예제 #37
0
def get_header_from_anat(anat_file, hdr={}):
    if anat_file is None:
        if len(hdr) == 0:
            # Defaults
            hdr[Header.VOXEL_SIZES] = (0, 0, 0)
            hdr[Header.DIMENSIONS] = (1, 1, 1)

        return hdr

    anat = nib.load(anat_file)

    hdr[Header.VOXEL_SIZES] = tuple(anat.get_header().get_zooms())[:3]
    hdr[Header.DIMENSIONS] = tuple(anat.get_header().get_data_shape())[:3]
    hdr[Header.VOXEL_TO_WORLD] = anat.get_header().get_best_affine()

    # We can guess the voxel order from the affine if there is no 0 on the diagonal.
    if not np.any(np.diag(hdr[Header.VOXEL_TO_WORLD]) == 0):
        hdr[Header.VOXEL_ORDER] = ''.join(nib.aff2axcodes(hdr[Header.VOXEL_TO_WORLD]))

    return hdr
예제 #38
0
    affine = img.get_affine()
    zooms = img.get_header().get_zooms()[:3]

    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)

    from dipy.core.gradients import gradient_table

    gtab = gradient_table(bvals, bvecs, b0_threshold=10)

    b0_index = np.where(gtab.b0s_mask == True)[0]

    mask = nib.load(fmask).get_data()

    print(data.shape)
    print(affine)
    print(nib.aff2axcodes(affine))

    print('>>> Resample data to 1x1x1 mm^3...')

    from dipy.align.aniso2iso import resample

    data2, affine2 = resample(data, affine,
                              zooms=zooms,
                              new_zooms=(1., 1., 1.))

    mask2, affine2 = resample(mask, affine,
                              zooms=zooms,
                              new_zooms=(1., 1., 1.))

    mask2[mask2 > 0] = 1
예제 #39
0
    print(">>> Warp T1 to S0 using ANTS...")

    fT1 = join(dname, "T1w_acpc_dc_restore_brain.nii.gz")

    fT1_flirt = join(dname, "t1_flirt.nii.gz")
    fmat = join(dname, "flirt_affine.mat")
    fS0 = join(dname, "dwi_S0_1x1x1.nii.gz")
    fFA = join(dname, "dwi_fa_1x1x1.nii.gz")
    fT1wS0 = join(dname, "t1_warped_S0.nii.gz")
    fdef = join(dname, "MultiVarNew")

    img_T1 = nib.load(fT1)
    print(img_T1.get_data().shape)
    print(img_T1.get_affine())
    print(nib.aff2axcodes(img_T1.get_affine()))

    del img_T1

    flirt_cmd = "flirt -in " + fT1 + " -ref " + fFA + " -out " + fT1_flirt + " -omat " + fmat
    print(flirt_cmd)
    pipe(flirt_cmd)

    br1 = "[" + fS0 + ", " + fT1_flirt + ", 1, 4]"
    br2 = "[" + fFA + ", " + fT1_flirt + ", 1.5, 4]"

    ants_cmd1 = "ANTS 3 -m CC" + br1 + " -m CC" + br2 + " -o " + fdef + " -i 75x75x10 -r Gauss[3,0] -t SyN[0.25]"
    ants_cmd2 = (
        "WarpImageMultiTransform 3 "
        + fT1_flirt
        + " "
def main():
    np.random.seed(int(time.time()))
    parser = buildArgsParser()
    args = parser.parse_args()

    param = {}
    
    if args.algo not in ["det", "prob"]:
        parser.error("--algo has wrong value. See the help (-h).")
    
    if args.basis not in ["mrtrix", "dipy", "fibernav"]:
        parser.error("--basis has wrong value. See the help (-h).")
    
    #if np.all([args.nt is None, args.npv is None, args.ns is None]):
    #    args.npv = 1
    
    if args.theta is not None:
        theta = gm.math.radians(args.theta)
    elif args.curvature > 0:
        theta = get_max_angle_from_curvature(args.curvature, args.step_size)
    elif args.algo == 'prob':
        theta = gm.math.radians(20)
    else:
        theta = gm.math.radians(45)
    
    if args.mask_interp == 'nn':
        mask_interpolation = 'nearest'
    elif args.mask_interp == 'tl':
        mask_interpolation = 'trilinear'
    else:
        parser.error("--mask_interp has wrong value. See the help (-h).")
        return
    
    if args.field_interp == 'nn':
        field_interpolation = 'nearest'
    elif args.field_interp == 'tl':
        field_interpolation = 'trilinear'
    else:
        parser.error("--sh_interp has wrong value. See the help (-h).")
        return
    
    param['algo'] = args.algo
    param['mask_interp'] = mask_interpolation
    param['field_interp'] = field_interpolation
    param['theta'] = theta
    param['sf_threshold'] = args.sf_threshold
    param['sf_threshold_init'] = args.sf_threshold_init
    param['step_size'] = args.step_size
    param['max_length'] = args.max_length
    param['min_length'] = args.min_length
    param['is_single_direction'] = False
    param['nbr_seeds'] = 0
    param['nbr_seeds_voxel'] = 0
    param['nbr_streamlines'] = 0
    param['max_no_dir'] = int(math.ceil(args.maxL_no_dir / param['step_size']))
    param['is_all'] = False
    param['isVerbose'] = args.isVerbose
    
    if param['isVerbose']:
        logging.basicConfig(level=logging.DEBUG)
    
    if param['isVerbose']:
        logging.info('Tractography parameters:\n{0}'.format(param))
    
    if os.path.isfile(args.output_file):
        if args.isForce:
            logging.info('Overwriting "{0}".'.format(args.output_file))
        else:
            parser.error(
                '"{0}" already exists! Use -f to overwrite it.'
                .format(args.output_file))
    
    nib_mask = nib.load(args.mask_file)
    mask = BinaryMask(
        Dataset(nib_mask, param['mask_interp']))
    
    dataset = Dataset(nib.load(args.sh_file), param['field_interp'])
    field = SphericalHarmonicField(
        dataset, args.basis, param['sf_threshold'], param['sf_threshold_init'], param['theta'])
    
    if args.algo == 'det':
        tracker = deterministicMaximaTracker(field, param['step_size'])
    elif args.algo == 'prob':
        tracker = probabilisticTracker(field, param['step_size'])
    else:
        parser.error("--algo has wrong value. See the help (-h).")
        return
    
    start = time.time()
    
    # Etienne St-Onge
    #load and transfo *** todo test with rotation and scaling
    seed_points = np.load(args.seed_points)
    seed_dirs = np.load(args.seed_dir)
    rotation = nib_mask.get_affine()[:3,:3]
    inv_rotation = np.linalg.inv(rotation)
    translation = nib_mask.get_affine()[:3,3]
    scale = np.array(nib_mask.get_header().get_zooms())
    voxel_space = nib.aff2axcodes(nib_mask.get_affine())
    
    print voxel_space
    # seed points transfo
    # LPS -> voxel_space
    if voxel_space[0] != 'L':
        print "flip X"
        seed_points[:,0] = -seed_points[:,0]
    if voxel_space[1] != 'P':
        print "flip Y"
        seed_points[:,1] = -seed_points[:,1]
    if voxel_space[2] != 'S':
        print "flip Z"
        seed_points[:,2] = -seed_points[:,2]
    
    # other transfo
    seed_points = seed_points - translation
    seed_points = seed_points.dot(inv_rotation)
    seed_points = seed_points * scale
    
    # seed dir transfo
    seed_dirs[:,0:2] = -seed_dirs[:,0:2]
    seed_dirs = seed_dirs.dot(inv_rotation)
    seed_dirs = seed_dirs * scale
    
    if args.inv_seed_dir:
        seed_dirs = seed_dirs * -1.0
    
    # Compute tractography
    nb_seeds = len(seed_dirs)
    if args.test is not None and args.test < nb_seeds:
        nb_seeds = args.test
    
    print args.algo," nb seeds: ", nb_seeds
    
    streamlines = []
    for i in range(nb_seeds):
        s = generate_streamline(tracker, mask, seed_points[i], seed_dirs[i], pft_tracker=None, param=param)
        streamlines.append(s)
        
        stdout.write("\r %d%%" % (i*101//nb_seeds))
        stdout.flush()
    stdout.write("\n done")
    stdout.flush()
    
    # transform back
    for i in range(len(streamlines)):
        streamlines[i] = streamlines[i] / scale
        streamlines[i] = streamlines[i].dot(rotation)
        streamlines[i] = streamlines[i] + translation
        # voxel_space -> LPS
        if voxel_space[0] != 'L':
            streamlines[i][:,0] = -streamlines[i][:,0]
        if voxel_space[1] != 'P':
            streamlines[i][:,1] = -streamlines[i][:,1]
        if voxel_space[2] != 'S':
            streamlines[i][:,2] = -streamlines[i][:,2]
    
    lines_polydata = lines_to_vtk_polydata(streamlines, None, np.float32)
    save_polydata(lines_polydata, args.output_file , True)
    
    lengths = [len(s) for s in streamlines]
    if nb_seeds > 0:
        ave_length = (sum(lengths) / nb_seeds) * param['step_size']
    else:
        ave_length = 0
    
    str_ave_length = "%.2f" % ave_length
    str_time = "%.2f" % (time.time() - start)
    print(str(nb_seeds) + " streamlines, with an average length of " +
          str_ave_length + " mm, done in " + str_time + " seconds.")
예제 #41
0
def get_nifti_voxel_space(nii):
    return  nib.aff2axcodes(nii.get_affine())
def main():
    parser = buildArgsParser()
    args = parser.parse_args()
    param = {}

    if args.pft_theta is None and args.pft_curvature is None:
        args.pft_theta = 20

    if not np.any([args.nt, args.npv, args.ns]):
        args.npv = 1

    if args.theta is not None:
        theta = gm.math.radians(args.theta)
    elif args.curvature > 0:
        theta = get_max_angle_from_curvature(args.curvature, args.step_size)
    elif args.algo == 'prob':
        theta = gm.math.radians(20)
    else:
        theta = gm.math.radians(45)

    if args.pft_curvature is not None:
        pft_theta = get_max_angle_from_curvature(args.pft_curvature, args.step_size)
    else:
        pft_theta = gm.math.radians(args.pft_theta)

    if args.mask_interp == 'nn':
        mask_interpolation = 'nearest'
    elif args.mask_interp == 'tl':
        mask_interpolation = 'trilinear'
    else:
        parser.error("--mask_interp has wrong value. See the help (-h).")
        return

    if args.field_interp == 'nn':
        field_interpolation = 'nearest'
    elif args.field_interp == 'tl':
        field_interpolation = 'trilinear'
    else:
        parser.error("--sh_interp has wrong value. See the help (-h).")
        return

    param['random'] = args.random
    param['skip'] = args.skip
    param['algo'] = args.algo
    param['mask_interp'] = mask_interpolation
    param['field_interp'] = field_interpolation
    param['theta'] = theta
    param['sf_threshold'] = args.sf_threshold
    param['pft_sf_threshold'] = args.pft_sf_threshold if args.pft_sf_threshold is not None else args.sf_threshold
    param['sf_threshold_init'] = args.sf_threshold_init
    param['step_size'] = args.step_size
    param['max_length'] = args.max_length
    param['min_length'] = args.min_length
    param['is_single_direction'] = args.is_single_direction
    param['nbr_seeds'] = args.nt if args.nt is not None else 0
    param['nbr_seeds_voxel'] = args.npv if args.npv is not None else 0
    param['nbr_streamlines'] = args.ns if args.ns is not None else 0
    param['max_no_dir'] = int(math.ceil(args.maxL_no_dir / param['step_size']))
    param['is_all'] = args.is_all
    param['is_act'] = args.is_act
    param['theta_pft'] = pft_theta
    if args.not_is_pft:
        param['nbr_particles'] = 0
        param['back_tracking'] = 0
        param['front_tracking'] = 0
    else:
        param['nbr_particles'] = args.nbr_particles
        param['back_tracking'] = int(
            math.ceil(args.back_tracking / args.step_size))
        param['front_tracking'] = int(
            math.ceil(args.front_tracking / args.step_size))
    param['nbr_iter'] = param['back_tracking'] + param['front_tracking']
    param['mmap_mode'] = None if args.isLoadData else 'r'

    if args.isVerbose:
        logging.basicConfig(level=logging.DEBUG)

    logging.debug('Tractography parameters:\n{0}'.format(param))

    if os.path.isfile(args.output_file):
        if args.isForce:
            logging.info('Overwriting "{0}".'.format(args.output_file))
        else:
            parser.error(
                '"{0}" already exists! Use -f to overwrite it.'
                .format(args.output_file))

    include_dataset = Dataset(
        nib.load(args.map_include_file), param['mask_interp'])
    exclude_dataset = Dataset(
        nib.load(args.map_exclude_file), param['mask_interp'])
    if param['is_act']:
        mask = ACT(include_dataset, exclude_dataset,
                   param['step_size'] / include_dataset.size[0])
    else:
        mask = CMC(include_dataset, exclude_dataset,
                   param['step_size'] / include_dataset.size[0])

    dataset = Dataset(nib.load(args.sh_file), param['field_interp'])
    field = SphericalHarmonicField(
        dataset, args.basis, param['sf_threshold'],
        param['sf_threshold_init'], param['theta'])

    if args.algo == 'det':
        tracker = deterministicMaximaTracker(field, param['step_size'])
    elif args.algo == 'prob':
        tracker = probabilisticTracker(field, param['step_size'])
    else:
        parser.error("--algo has wrong value. See the help (-h).")
        return

    pft_field = SphericalHarmonicField(
        dataset, args.basis, param['pft_sf_threshold'],
        param['sf_threshold_init'], param['theta_pft'])

    pft_tracker = probabilisticTracker(pft_field, param['step_size'])
    
    # ADD Seed input
    # modify ESO
    nib_mask = nib.load(args.map_include_file)
    seed_points = np.load(args.seed_points)
    seed_dirs = np.load(args.seed_dir)
    rotation = nib_mask.get_affine()[:3,:3]
    inv_rotation = np.linalg.inv(rotation)
    translation = nib_mask.get_affine()[:3,3]
    scale = np.array(nib_mask.get_header().get_zooms())
    voxel_space = nib.aff2axcodes(nib_mask.get_affine())
    
    print voxel_space
    # seed points transfo
    # LPS -> voxel_space
    print scale
    if voxel_space[0] != 'L':
        print "flip X"
        seed_points[:,0] = -seed_points[:,0]
    if voxel_space[1] != 'P':
        print "flip Y"
        seed_points[:,1] = -seed_points[:,1]
    if voxel_space[2] != 'S':
        print "flip Z"
        seed_points[:,2] = -seed_points[:,2]
    
    # other transfo
    seed_points = seed_points - translation
    seed_points = seed_points.dot(inv_rotation)
    seed_points = seed_points * scale
    
    # seed dir transfo
    seed_dirs[:,0:2] = -seed_dirs[:,0:2]
    seed_dirs = seed_dirs.dot(inv_rotation)
    seed_dirs = seed_dirs * scale
    
    if args.inv_seed_dir:
        seed_dirs = seed_dirs * -1.0
    
    # Compute tractography
    nb_seeds = len(seed_dirs)
    if args.test is not None and args.test < nb_seeds:
        nb_seeds = args.test
    # end modify ESO
    
    
    # tracker to modify
    # modify ESO
    start = time.time()
    streamlines = []
    for i in range(nb_seeds):
        s = generate_streamline(tracker, mask, seed_points[i], seed_dirs[i], pft_tracker=pft_tracker, param=param)
        streamlines.append(s)
        stdout.write("\r %d%%" % (i*101//nb_seeds))
        stdout.flush()
    
    stdout.write("\n done")
    stdout.flush()
    stop = time.time()
    # end modify ESO

    
    # ADD save fiber output
    # modify ESO
    for i in range(len(streamlines)):
        streamlines[i] = streamlines[i] / scale
        streamlines[i] = streamlines[i].dot(rotation)
        streamlines[i] = streamlines[i] + translation
        # voxel_space -> LPS
        if voxel_space[0] != 'L':
            streamlines[i][:,0] = -streamlines[i][:,0]
        if voxel_space[1] != 'P':
            streamlines[i][:,1] = -streamlines[i][:,1]
        if voxel_space[2] != 'S':
            streamlines[i][:,2] = -streamlines[i][:,2]
    
    lines_polydata = lines_to_vtk_polydata(streamlines, None, np.float32)
    save_polydata(lines_polydata, args.output_file , True)
    # end modify ESO

    lengths = [len(s) for s in streamlines]
    if nb_seeds > 0:
        ave_length = (sum(lengths) / nb_seeds) * param['step_size']
    else:
        ave_length = 0
    
    str_ave_length = "%.2f" % ave_length
    str_time = "%.2f" % (stop - start)
    print(str(nb_seeds) + " streamlines, with an average length of " +
          str_ave_length + " mm, done in " + str_time + " seconds.")
예제 #43
0
# load volume
mask_file = args.volume
volume_nib = nib.load(mask_file)
    
# load tracto
init_streamlines_list = []
for filename in args.fibers: 
    init_streamlines_list.append(get_streamlines(load_streamlines_poyldata(filename)))
    print filename, len(init_streamlines_list[-1])

# Transform tracto to Voxel space
rotation = volume_nib.get_affine()[:3,:3]
inv_rotation = np.linalg.inv(rotation)
translation = volume_nib.get_affine()[:3,3]
scale = np.array(volume_nib.get_header().get_zooms())
voxel_space = nib.aff2axcodes(volume_nib.get_affine())

print voxel_space
# seed points transfo
# LPS -> voxel_space
vertices_list = []
dirs_list = []
for streamlines in init_streamlines_list:
    for streamline in streamlines:
        if voxel_space[0] != 'L':
            #print "flip X"
            streamline[:,0] = -streamline[:,0]
        if voxel_space[1] != 'P':
            #print "flip Y"
            streamline[:,1] = -streamline[:,1]
        if voxel_space[2] != 'S':
예제 #44
0

parser.add_argument('-tx', type=float, default=None, help='x translation')
parser.add_argument('-ty', type=float, default=None, help='y translation')
parser.add_argument('-tz', type=float, default=None, help='z translation')

args = parser.parse_args()

# get transform
nib_mask = nib.load(args.mask)
lines = get_streamlines(load_streamlines_poyldata(args.tract))
rotation = nib_mask.get_affine()[:3,:3]
inv_rotation = np.linalg.inv(rotation)
translation = nib_mask.get_affine()[:3,3]
scale = np.array(nib_mask.get_header().get_zooms())
voxel_space = nib.aff2axcodes(nib_mask.get_affine())

shape = nib_mask.get_data().shape
print shape

# transform 
if not args.no_transfo:
    if args.lps_ras:
        print "LPS -> RAS"
        print "Not implemented"
        raise NotImplementedError()
    else:
        print "LPS ->", voxel_space, " mm"
        for i in range(len(lines)):
            if voxel_space[0] != 'L':
                lines[i][:,0] = -lines[i][:,0]