def test_run_vars(self): app_driver = get_initialised_driver() test_graph = app_driver.create_graph(app_driver.app, 1, True) test_tensor = test_graph.get_tensor_by_name("G/conv_bn_selu/conv_/w:0") train_eval_msgs = [] test_vals = [] def get_iter_msgs(_sender, **msg): """" Captures iter_msg and model values for testing""" train_eval_msgs.append(msg['iter_msg']) test_vals.append(sess.run(test_tensor)) print(msg['iter_msg'].to_console_string()) ITER_FINISHED.connect(get_iter_msgs) with self.test_session(graph=test_graph) as sess: GRAPH_CREATED.send(app_driver.app, iter_msg=None) SESS_STARTED.send(app_driver.app, iter_msg=None) iterations = IterationMessageGenerator(initial_iter=0, final_iter=3, validation_every_n=2, validation_max_iter=1, is_training_action=True) app_driver.loop(app_driver.app, iterations()) # Check sequence of iterations self.assertRegexpMatches(train_eval_msgs[0].to_console_string(), 'training') self.assertRegexpMatches(train_eval_msgs[1].to_console_string(), 'training') self.assertRegexpMatches(train_eval_msgs[2].to_console_string(), 'validation') self.assertRegexpMatches(train_eval_msgs[3].to_console_string(), 'training') # Check durations for iter_msg in train_eval_msgs: self.assertGreater(iter_msg.iter_duration, 0.0) # Check training changes test tensor self.assertNotAlmostEqual( np.mean(np.abs(test_vals[0] - test_vals[1])), 0.0) self.assertNotAlmostEqual( np.mean(np.abs(test_vals[2] - test_vals[3])), 0.0) # Check validation doesn't change test tensor self.assertAlmostEqual( np.mean(np.abs(test_vals[1] - test_vals[2])), 0.0) app_driver.app.stop() ITER_FINISHED.disconnect(get_iter_msgs)
def test_init(self): app_driver = get_initialised_driver() test_graph = app_driver.create_graph(app_driver.app, 1, True) app_driver.app.set_iteration_update = set_iteration_update app_driver.app.interpret_output = self.create_interpreter() app_driver.load_event_handlers([ 'niftynet.engine.handler_model.ModelRestorer', 'niftynet.engine.handler_network_output.OutputInterpreter', 'niftynet.engine.handler_sampler.SamplerThreading' ]) with self.test_session(graph=test_graph) as sess: SESS_STARTED.send(app_driver.app, iter_msg=None) iterator = IterationMessageGenerator(is_training_action=False) app_driver.loop(app_driver.app, iterator()) app_driver.app.stop()