def initialise_dataset_loader( self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.segmentation_param = task_param # read each line of csv files into an instance of Subject if self.is_training: file_lists = [] if self.action_param.validation_every_n > 0: file_lists.append(data_partitioner.train_files) file_lists.append(data_partitioner.validation_files) else: file_lists.append(data_partitioner.train_files) self.readers = [] for file_list in file_lists: reader = ImageReader(SUPPORTED_INPUT) reader.initialise(data_param, task_param, file_list) self.readers.append(reader) else: # in the inference process use image input only inference_reader = ImageReader(['image']) file_list = data_partitioner.inference_files inference_reader.initialise(data_param, task_param, file_list) self.readers = [inference_reader] foreground_masking_layer = None if self.net_param.normalise_foreground_only: foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) normalisation_layers = [] if self.net_param.whitening: mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) normalisation_layers.append(mean_var_normaliser) if task_param.label_normalisation and \ (self.is_training or not task_param.output_prob): label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file) normalisation_layers.append(label_normaliser) volume_padding_layer = [] if self.net_param.volume_padding_size: volume_padding_layer.append(PadLayer( image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size)) for reader in self.readers: reader.add_preprocessing_layers( normalisation_layers + volume_padding_layer)
def test_trainable_preprocessing(self): label_file = os.path.join('testing_data', 'label_reader.txt') if os.path.exists(label_file): os.remove(label_file) label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(LABEL_TASK).get('label'), model_filename=os.path.join('testing_data', 'label_reader.txt')) reader = ImageReader(['label']) with self.assertRaisesRegexp(AssertionError, ''): reader.add_preprocessing_layers(label_normaliser) reader.initialise(LABEL_DATA, LABEL_TASK, label_list) reader.add_preprocessing_layers(label_normaliser) reader.add_preprocessing_layers( [PadLayer(image_name=['label'], border=(10, 5, 5))]) idx, data, interp_order = reader(idx=0) unique_data = np.unique(data['label']) expected_v1 = np.array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149., 150., 151., 152., 153., 154., 155., 156., 157. ], dtype=np.float32) expected_v2 = np.array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138., 139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149., 150., 151., 152., 153., 154., 155., 156., 157. ], dtype=np.float32) compatible_assert = \ np.all(unique_data == expected_v1) or \ np.all(unique_data == expected_v2) self.assertTrue(compatible_assert) self.assertAllClose(data['label'].shape, (103, 74, 93, 1, 1))
def get_label_reader(): reader = ImageReader(['label']) reader.initialise(MOD_LABEL_DATA, MOD_LABEl_TASK, mod_label_list) label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(SINGLE_25D_TASK).get('label'), model_filename=os.path.join('testing_data', 'agg_test.txt')) reader.add_preprocessing_layers(label_normaliser) pad_layer = PadLayer(image_name=('label',), border=(5, 6, 7)) reader.add_preprocessing_layers([pad_layer]) return reader
def test_trainable_preprocessing(self): label_file = os.path.join('testing_data', 'label_reader.txt') if os.path.exists(label_file): os.remove(label_file) label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(LABEL_TASK).get('label'), model_filename=os.path.join('testing_data', 'label_reader.txt')) reader = ImageReader(['label']) with self.assertRaisesRegexp(AssertionError, ''): reader.add_preprocessing_layers(label_normaliser) reader.initialise_reader(LABEL_DATA, LABEL_TASK) reader.add_preprocessing_layers(label_normaliser) reader.add_preprocessing_layers( [PadLayer(image_name=['label'], border=(10, 5, 5))]) idx, data, interp_order = reader(idx=0) unique_data = np.unique(data['label']) expected = np.array(range(156), dtype=np.float32) self.assertAllClose(unique_data, expected) self.assertAllClose(data['label'].shape, (83, 73, 73, 1, 1))
def initialise_dataset_loader(self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.segmentation_param = task_param # read each line of csv files into an instance of Subject if self.is_training: file_lists = [] if self.action_param.validation_every_n > 0: file_lists.append(data_partitioner.train_files) file_lists.append(data_partitioner.validation_files) else: file_lists.append(data_partitioner.all_files) self.readers = [] for file_list in file_lists: reader = ImageReader(SUPPORTED_INPUT) reader.initialise(data_param, task_param, file_list) self.readers.append(reader) else: # in the inference process use image input only inference_reader = ImageReader(['image']) file_list = data_partitioner.inference_files inference_reader.initialise(data_param, task_param, file_list) self.readers = [inference_reader] foreground_masking_layer = None if self.net_param.normalise_foreground_only: foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) histogram_normaliser = None if self.net_param.histogram_ref_file: histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') label_normaliser = None if self.net_param.histogram_ref_file: label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file) normalisation_layers = [] if self.net_param.normalisation: normalisation_layers.append(histogram_normaliser) if self.net_param.whitening: normalisation_layers.append(mean_var_normaliser) if task_param.label_normalisation: normalisation_layers.append(label_normaliser) augmentation_layers = [] if self.is_training: if self.action_param.random_flipping_axes != -1: augmentation_layers.append(RandomFlipLayer( flip_axes=self.action_param.random_flipping_axes)) if self.action_param.scaling_percentage: augmentation_layers.append(RandomSpatialScalingLayer( min_percentage=self.action_param.scaling_percentage[0], max_percentage=self.action_param.scaling_percentage[1])) if self.action_param.rotation_angle or \ self.action_param.rotation_angle_x or \ self.action_param.rotation_angle_y or \ self.action_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if self.action_param.rotation_angle: rotation_layer.init_uniform_angle( self.action_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( self.action_param.rotation_angle_x, self.action_param.rotation_angle_y, self.action_param.rotation_angle_z) augmentation_layers.append(rotation_layer) volume_padding_layer = [] if self.net_param.volume_padding_size: volume_padding_layer.append(PadLayer( image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size)) for reader in self.readers: reader.add_preprocessing_layers( volume_padding_layer + normalisation_layers + augmentation_layers)
def initialise_dataset_loader( self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.segmentation_param = task_param # initialise input image readers if self.is_training: reader_names = ('image', 'label', 'weight_map', 'sampler') elif self.is_inference: # in the inference process use `image` input only reader_names = ('image',) elif self.is_evaluation: reader_names = ('image', 'label', 'inferred') else: tf.logging.fatal( 'Action `%s` not supported. Expected one of %s', self.action, self.SUPPORTED_PHASES) raise ValueError try: reader_phase = self.action_param.dataset_to_infer except AttributeError: reader_phase = None file_lists = data_partitioner.get_file_lists_by( phase=reader_phase, action=self.action) self.readers = [ ImageReader(reader_names).initialise( data_param, task_param, file_list) for file_list in file_lists] # initialise input preprocessing layers foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) \ if self.net_param.normalise_foreground_only else None mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) \ if self.net_param.whitening else None percentile_normaliser = PercentileNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer, cutoff=self.net_param.cutoff) \ if self.net_param.percentile_normalisation else None histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') \ if (self.net_param.histogram_ref_file and self.net_param.normalisation) else None label_normalisers = None if self.net_param.histogram_ref_file and \ task_param.label_normalisation: label_normalisers = [DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file)] if self.is_evaluation: label_normalisers.append( DiscreteLabelNormalisationLayer( image_name='inferred', modalities=vars(task_param).get('inferred'), model_filename=self.net_param.histogram_ref_file)) label_normalisers[-1].key = label_normalisers[0].key normalisation_layers = [] if histogram_normaliser is not None: normalisation_layers.append(histogram_normaliser) if mean_var_normaliser is not None: normalisation_layers.append(mean_var_normaliser) if percentile_normaliser is not None: normalisation_layers.append(percentile_normaliser) if task_param.label_normalisation and \ (self.is_training or not task_param.output_prob): normalisation_layers.extend(label_normalisers) volume_padding_layer = [] if self.net_param.volume_padding_size: volume_padding_layer.append(PadLayer( image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size, mode=self.net_param.volume_padding_mode)) # initialise training data augmentation layers augmentation_layers = [] if self.is_training: train_param = self.action_param if train_param.random_flipping_axes != -1: augmentation_layers.append(RandomFlipLayer( flip_axes=train_param.random_flipping_axes)) if train_param.scaling_percentage: augmentation_layers.append(RandomSpatialScalingLayer( min_percentage=train_param.scaling_percentage[0], max_percentage=train_param.scaling_percentage[1], antialiasing=train_param.antialiasing)) if train_param.rotation_angle or \ train_param.rotation_angle_x or \ train_param.rotation_angle_y or \ train_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if train_param.rotation_angle: rotation_layer.init_uniform_angle( train_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( train_param.rotation_angle_x, train_param.rotation_angle_y, train_param.rotation_angle_z) augmentation_layers.append(rotation_layer) if train_param.do_elastic_deformation: spatial_rank = list(self.readers[0].spatial_ranks.values())[0] augmentation_layers.append(RandomElasticDeformationLayer( spatial_rank=spatial_rank, num_controlpoints=train_param.num_ctrl_points, std_deformation_sigma=train_param.deformation_sigma, proportion_to_augment=train_param.proportion_to_deform)) # only add augmentation to first reader (not validation reader) self.readers[0].add_preprocessing_layers( volume_padding_layer + normalisation_layers + augmentation_layers) for reader in self.readers[1:]: reader.add_preprocessing_layers( volume_padding_layer + normalisation_layers)
def initialise_dataset_loader(self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.segmentation_param = task_param # initialise input image readers if self.is_training: reader_names = ('image', 'label', 'weight', 'sampler') elif self.is_inference: # in the inference process use `image` input only reader_names = ('image', ) elif self.is_evaluation: reader_names = ('image', 'label', 'inferred') else: tf.logging.fatal('Action `%s` not supported. Expected one of %s', self.action, self.SUPPORTED_PHASES) raise ValueError try: reader_phase = self.action_param.dataset_to_infer except AttributeError: reader_phase = None file_lists = data_partitioner.get_file_lists_by(phase=reader_phase, action=self.action) self.readers = [ ImageReader(reader_names).initialise(data_param, task_param, file_list) for file_list in file_lists ] foreground_masking_layer = None if self.net_param.normalise_foreground_only: foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) histogram_normaliser = None if self.net_param.histogram_ref_file: histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') label_normaliser = None if self.net_param.histogram_ref_file: label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file) normalisation_layers = [] if self.net_param.normalisation: normalisation_layers.append(histogram_normaliser) if self.net_param.whitening: normalisation_layers.append(mean_var_normaliser) if task_param.label_normalisation and \ (self.is_training or not task_param.output_prob): normalisation_layers.append(label_normaliser) augmentation_layers = [] if self.is_training: if self.action_param.random_flipping_axes != -1: augmentation_layers.append( RandomFlipLayer( flip_axes=self.action_param.random_flipping_axes)) if self.action_param.scaling_percentage: augmentation_layers.append( RandomSpatialScalingLayer( min_percentage=self.action_param.scaling_percentage[0], max_percentage=self.action_param.scaling_percentage[1]) ) if self.action_param.rotation_angle or \ self.action_param.rotation_angle_x or \ self.action_param.rotation_angle_y or \ self.action_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if self.action_param.rotation_angle: rotation_layer.init_uniform_angle( self.action_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( self.action_param.rotation_angle_x, self.action_param.rotation_angle_y, self.action_param.rotation_angle_z) augmentation_layers.append(rotation_layer) if self.action_param.bias_field_range: bias_field_layer = RandomBiasFieldLayer() bias_field_layer.init_order(self.action_param.bf_order) bias_field_layer.init_uniform_coeff( self.action_param.bias_field_range) augmentation_layers.append(bias_field_layer) volume_padding_layer = [ PadLayer(image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size, mode=self.net_param.volume_padding_mode, pad_to=self.net_param.volume_padding_to_size) ] self.readers[0].add_preprocessing_layers(volume_padding_layer + normalisation_layers + augmentation_layers) for reader in self.readers[1:]: reader.add_preprocessing_layers(volume_padding_layer + normalisation_layers)
def initialise_dataset_loader(self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.classification_param = task_param if self.is_training: reader_names = ('image', 'label', 'sampler') elif self.is_inference: reader_names = ('image', ) elif self.is_evaluation: reader_names = ('image', 'label', 'inferred') else: tf.logging.fatal('Action `%s` not supported. Expected one of %s', self.action, self.SUPPORTED_PHASES) raise ValueError try: reader_phase = self.action_param.dataset_to_infer except AttributeError: reader_phase = None file_lists = data_partitioner.get_file_lists_by(phase=reader_phase, action=self.action) self.readers = [ ImageReader(reader_names).initialise(data_param, task_param, file_list) for file_list in file_lists ] foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) \ if self.net_param.normalise_foreground_only else None mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) \ if self.net_param.whitening else None histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') \ if (self.net_param.histogram_ref_file and self.net_param.normalisation) else None label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file) \ if (self.net_param.histogram_ref_file and task_param.label_normalisation) else None normalisation_layers = [] if histogram_normaliser is not None: normalisation_layers.append(histogram_normaliser) if mean_var_normaliser is not None: normalisation_layers.append(mean_var_normaliser) if label_normaliser is not None: normalisation_layers.append(label_normaliser) augmentation_layers = [] if self.is_training: train_param = self.action_param if train_param.random_flipping_axes != -1: augmentation_layers.append( RandomFlipLayer( flip_axes=train_param.random_flipping_axes)) if train_param.scaling_percentage: augmentation_layers.append( RandomSpatialScalingLayer( min_percentage=train_param.scaling_percentage[0], max_percentage=train_param.scaling_percentage[1], antialiasing=train_param.antialiasing, isotropic=train_param.isotropic_scaling)) if train_param.rotation_angle or \ self.action_param.rotation_angle_x or \ self.action_param.rotation_angle_y or \ self.action_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if train_param.rotation_angle: rotation_layer.init_uniform_angle( train_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( self.action_param.rotation_angle_x, self.action_param.rotation_angle_y, self.action_param.rotation_angle_z) augmentation_layers.append(rotation_layer) # only add augmentation to first reader (not validation reader) self.readers[0].add_preprocessing_layers(normalisation_layers + augmentation_layers) for reader in self.readers[1:]: reader.add_preprocessing_layers(normalisation_layers)
def initialise_dataset_loader(self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.segmentation_param = task_param file_lists = self.get_file_lists(data_partitioner) # read each line of csv files into an instance of Subject if self.is_training: self.readers = [] for file_list in file_lists: reader = ImageReader({'image', 'label', 'weight', 'sampler'}) reader.initialise(data_param, task_param, file_list) self.readers.append(reader) elif self.is_inference: # in the inference process use image input only inference_reader = ImageReader({'image'}) file_list = pd.concat([ data_partitioner.inference_files, data_partitioner.validation_files ], axis=0) file_list.index = range(file_list.shape[0]) inference_reader.initialise(data_param, task_param, file_list) self.readers = [inference_reader] elif self.is_evaluation: file_list = data_partitioner.inference_files reader = ImageReader({'image', 'label', 'inferred'}) reader.initialise(data_param, task_param, file_list) self.readers = [reader] else: raise ValueError( 'Action `{}` not supported. Expected one of {}'.format( self.action, self.SUPPORTED_ACTIONS)) foreground_masking_layer = None if self.net_param.normalise_foreground_only: foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) histogram_normaliser = None if self.net_param.histogram_ref_file: histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') label_normalisers = None if self.net_param.histogram_ref_file and \ task_param.label_normalisation: label_normalisers = [ DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file) ] if self.is_evaluation: label_normalisers.append( DiscreteLabelNormalisationLayer( image_name='inferred', modalities=vars(task_param).get('inferred'), model_filename=self.net_param.histogram_ref_file)) label_normalisers[-1].key = label_normalisers[0].key normalisation_layers = [] if self.net_param.normalisation: normalisation_layers.append(histogram_normaliser) if self.net_param.whitening: normalisation_layers.append(mean_var_normaliser) if task_param.label_normalisation and \ (self.is_training or not task_param.output_prob): normalisation_layers.extend(label_normalisers) augmentation_layers = [] if self.is_training: if self.action_param.random_flipping_axes != -1: augmentation_layers.append( RandomFlipLayer( flip_axes=self.action_param.random_flipping_axes)) if self.action_param.scaling_percentage: augmentation_layers.append( RandomSpatialScalingLayer( min_percentage=self.action_param.scaling_percentage[0], max_percentage=self.action_param.scaling_percentage[1]) ) if self.action_param.rotation_angle or \ self.action_param.rotation_angle_x or \ self.action_param.rotation_angle_y or \ self.action_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if self.action_param.rotation_angle: rotation_layer.init_uniform_angle( self.action_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( self.action_param.rotation_angle_x, self.action_param.rotation_angle_y, self.action_param.rotation_angle_z) augmentation_layers.append(rotation_layer) # add deformation layer if self.action_param.do_elastic_deformation: spatial_rank = list(self.readers[0].spatial_ranks.values())[0] augmentation_layers.append( RandomElasticDeformationLayer( spatial_rank=spatial_rank, num_controlpoints=self.action_param.num_ctrl_points, std_deformation_sigma=self.action_param. deformation_sigma, proportion_to_augment=self.action_param. proportion_to_deform)) volume_padding_layer = [] if self.net_param.volume_padding_size: volume_padding_layer.append( PadLayer(image_name=SUPPORTED_INPUT, border=self.net_param.volume_padding_size)) # only add augmentation to first reader (not validation reader) self.readers[0].add_preprocessing_layers(volume_padding_layer + normalisation_layers + augmentation_layers) for reader in self.readers[1:]: reader.add_preprocessing_layers(volume_padding_layer + normalisation_layers)
def initialise_dataset_loader( self, data_param=None, task_param=None, data_partitioner=None): self.data_param = data_param self.classification_param = task_param file_lists = self.get_file_lists(data_partitioner) # read each line of csv files into an instance of Subject if self.is_training: self.readers = [] for file_list in file_lists: reader = ImageReader(['image', 'label', 'sampler']) reader.initialise(data_param, task_param, file_list) self.readers.append(reader) elif self.is_inference: # in the inference process use image input only inference_reader = ImageReader(['image']) inference_reader.initialise(data_param, task_param, file_lists[0]) self.readers = [inference_reader] elif self.is_evaluation: reader = ImageReader({'image', 'label', 'inferred'}) reader.initialise(data_param, task_param, file_lists[0]) self.readers = [reader] else: raise ValueError('Action `{}` not supported. Expected one of {}' .format(self.action, self.SUPPORTED_ACTIONS)) foreground_masking_layer = None if self.net_param.normalise_foreground_only: foreground_masking_layer = BinaryMaskingLayer( type_str=self.net_param.foreground_type, multimod_fusion=self.net_param.multimod_foreground_type, threshold=0.0) mean_var_normaliser = MeanVarNormalisationLayer( image_name='image', binary_masking_func=foreground_masking_layer) histogram_normaliser = None if self.net_param.histogram_ref_file: histogram_normaliser = HistogramNormalisationLayer( image_name='image', modalities=vars(task_param).get('image'), model_filename=self.net_param.histogram_ref_file, binary_masking_func=foreground_masking_layer, norm_type=self.net_param.norm_type, cutoff=self.net_param.cutoff, name='hist_norm_layer') label_normaliser = None if self.net_param.histogram_ref_file: label_normaliser = DiscreteLabelNormalisationLayer( image_name='label', modalities=vars(task_param).get('label'), model_filename=self.net_param.histogram_ref_file) normalisation_layers = [] if self.net_param.normalisation: normalisation_layers.append(histogram_normaliser) if self.net_param.whitening: normalisation_layers.append(mean_var_normaliser) if task_param.label_normalisation: normalisation_layers.append(label_normaliser) augmentation_layers = [] if self.is_training: if self.action_param.random_flipping_axes != -1: augmentation_layers.append(RandomFlipLayer( flip_axes=self.action_param.random_flipping_axes)) if self.action_param.scaling_percentage: augmentation_layers.append(RandomSpatialScalingLayer( min_percentage=self.action_param.scaling_percentage[0], max_percentage=self.action_param.scaling_percentage[1])) if self.action_param.rotation_angle or \ self.action_param.rotation_angle_x or \ self.action_param.rotation_angle_y or \ self.action_param.rotation_angle_z: rotation_layer = RandomRotationLayer() if self.action_param.rotation_angle: rotation_layer.init_uniform_angle( self.action_param.rotation_angle) else: rotation_layer.init_non_uniform_angle( self.action_param.rotation_angle_x, self.action_param.rotation_angle_y, self.action_param.rotation_angle_z) augmentation_layers.append(rotation_layer) for reader in self.readers: reader.add_preprocessing_layers( normalisation_layers + augmentation_layers)