예제 #1
0
    def __init__(self,
                 decay,
                 affine_w_initializer=None,
                 affine_b_initializer=None,
                 disp_w_initializer=None,
                 disp_b_initializer=None,
                 acti_func='relu',
                 interp='linear',
                 boundary='replicate',
                 name='inet-hybrid-pre-warp'):
        """

        :param decay: float, regularisation decay
        :param affine_w_initializer: weight initialisation for affine registration network
        :param affine_b_initializer: bias initialisation for affine registration network
        :param disp_w_initializer: weight initialisation for dense registration network
        :param disp_b_initializer: bias initialisation for dense registration network
        :param acti_func: activation function to use
        :param interp: string, type of interpolation for the resampling [default:linear]
        :param boundary: string, padding mode to deal with image boundary
        :param name: layer name
        """
        BaseNet.__init__(self, name=name)
        self.global_net = INetAffine(decay=decay,
                                     affine_w_initializer=affine_w_initializer,
                                     affine_b_initializer=affine_b_initializer,
                                     acti_func=acti_func,
                                     name='inet-global')
        self.local_net = INetDense(decay=decay,
                                   disp_w_initializer=disp_w_initializer,
                                   disp_b_initializer=disp_b_initializer,
                                   acti_func=acti_func,
                                   name='inet-local')
        self.interp = interp
        self.boundary = boundary
예제 #2
0
    def test_3d_shape(self):
        input_shape = (2, 32, 32, 32, 1)
        x = tf.ones(input_shape)

        densenet_instance = INetDense()
        out = densenet_instance(x, x, is_training=True)
        print(densenet_instance)

        with self.cached_session() as sess:
            sess.run(tf.global_variables_initializer())
            out = sess.run(out)
            self.assertAllClose((2, 32, 32, 32, 3), out.shape)
예제 #3
0
    def __init__(self,
                 decay,
                 affine_w_initializer=None,
                 affine_b_initializer=None,
                 disp_w_initializer=None,
                 disp_b_initializer=None,
                 acti_func='relu',
                 interp='linear',
                 boundary='replicate',
                 name='inet-hybrid-pre-warp'):
        """
        Re-implementation of the registration network proposed in:

            Hu et al., Label-driven weakly-supervised learning for
            multimodal deformable image registration, arXiv:1711.01666
            https://arxiv.org/abs/1711.01666

            Hu et al., Weakly-Supervised Convolutional Neural Networks for
            Multimodal Image Registration, Medical Image Analysis (2018)
            https://doi.org/10.1016/j.media.2018.07.002

        see also:
            https://github.com/YipengHu/label-reg

        :param decay:
        :param affine_w_initializer:
        :param affine_b_initializer:
        :param disp_w_initializer:
        :param disp_b_initializer:
        :param acti_func:
        :param interp:
        :param boundary:
        :param name:
        """
        BaseNet.__init__(self, name=name)
        self.global_net = INetAffine(decay=decay,
                                     affine_w_initializer=affine_w_initializer,
                                     affine_b_initializer=affine_b_initializer,
                                     acti_func=acti_func,
                                     name='inet-global')
        self.local_net = INetDense(decay=decay,
                                   disp_w_initializer=disp_w_initializer,
                                   disp_b_initializer=disp_b_initializer,
                                   acti_func=acti_func,
                                   name='inet-local')
        self.interp = interp
        self.boundary = boundary
    def __init__(self,
                 decay,
                 affine_w_initializer=None,
                 affine_b_initializer=None,
                 disp_w_initializer=None,
                 disp_b_initializer=None,
                 acti_func='relu',
                 interp='linear',
                 boundary='replicate',
                 name='inet-hybrid-pre-warp'):
        """
        Re-implementation of the registration network proposed in:

            Hu et al., Label-driven weakly-supervised learning for
            multimodal deformable image registration, arXiv:1711.01666
            https://arxiv.org/abs/1711.01666

        :param decay:
        :param affine_w_initializer:
        :param affine_b_initializer:
        :param disp_w_initializer:
        :param disp_b_initializer:
        :param acti_func:
        :param interp:
        :param boundary:
        :param name:
        """
        BaseNet.__init__(self, name=name)
        self.global_net = INetAffine(decay=decay,
                                     affine_w_initializer=affine_w_initializer,
                                     affine_b_initializer=affine_b_initializer,
                                     acti_func=acti_func,
                                     name='inet-global')
        self.local_net = INetDense(decay=decay,
                                   disp_w_initializer=disp_w_initializer,
                                   disp_b_initializer=disp_b_initializer,
                                   acti_func=acti_func,
                                   name='inet-local')
        self.interp = interp
        self.boundary = boundary
 def __init__(self,
              decay,
              affine_w_initializer=None,
              affine_b_initializer=None,
              disp_w_initializer=None,
              disp_b_initializer=None,
              acti_func='relu',
              interp='linear',
              boundary='replicate',
              name='inet-hybrid-two-stream'):
     BaseNet.__init__(self, name=name)
     self.global_net = INetAffine(decay=decay,
                                  affine_w_initializer=affine_w_initializer,
                                  affine_b_initializer=affine_b_initializer,
                                  acti_func=acti_func,
                                  name='inet-global')
     self.local_net = INetDense(decay=decay,
                                disp_w_initializer=disp_w_initializer,
                                disp_b_initializer=disp_b_initializer,
                                acti_func=acti_func,
                                name='inet-local')
     self.interp = interp
     self.boundary = boundary