def vsm( datain, mumaps, em, hst, rsinos, scanner_params, prcnt_scl=0.1, emmsk=False, return_uninterp=False, return_ssrb=False, return_mask=False, ): ''' Voxel-driven scatter modelling (VSM). Obtain a scatter sinogram using the mu-maps (hardware and object mu-maps) an estimate of emission image, the prompt measured sinogram, an estimate of the randoms sinogram and a normalisation sinogram. Input: - datain: Contains the data used for scatter-specific detector normalisation. May also include the non-corrected emission image used for masking, when requested. - mumaps: A tuple of hardware and object mu-maps (in this order). - em: An estimate of the emission image. - hst: Dictionary containing the histogrammed measured data into sinograms. - rsinos: Randoms sinogram (3D). Needed for proper scaling of scatter to the prompt data. - scanner_params: Scanner specific parameters. - prcnt_scl: Ratio of the maximum scatter intensities below which the scatter is not used for fitting it to the tails of prompt data. Default is 10%. - emmsk: When 'True' it will use uncorrected emission image for masking the sources (voxels) of photons to be used in the scatter modelling. ''' log = logging.getLogger(__name__) muh, muo = mumaps #-constants, transaxial and axial LUTs are extracted Cnt = scanner_params['Cnt'] txLUT = scanner_params['txLUT'] axLUT = scanner_params['axLUT'] if emmsk and not os.path.isfile(datain['em_nocrr']): log.info( 'reconstruction of emission data without scatter and attenuation correction for mask generation' ) recnac = mmrrec.osemone(datain, mumaps, hst, scanner_params, recmod=0, itr=3, fwhm=2.0, store_img=True) datain['em_nocrr'] = recnac.fpet #-get the normalisation components nrmcmp, nhdr = mmrnorm.get_components(datain, Cnt) #-smooth for defining the sino scatter only regions mu_sctonly = ndi.filters.gaussian_filter(mmrimg.convert2dev(muo, Cnt), fwhm2sig(0.42, Cnt), mode='mirror') if Cnt['SPN'] == 1: snno = Cnt['NSN1'] snno_ = Cnt['NSN64'] ssrlut = axLUT['sn1_ssrb'] saxnrm = nrmcmp['sax_f1'] elif Cnt['SPN'] == 11: snno = Cnt['NSN11'] snno_ = snno ssrlut = axLUT['sn11_ssrb'] saxnrm = nrmcmp['sax_f11'] #LUTs for scatter sctLUT = get_sctLUT(Cnt) #-smooth before down-sampling mu-map and emission image muim = ndi.filters.gaussian_filter(muo + muh, fwhm2sig(0.42, Cnt), mode='mirror') muim = ndi.interpolation.zoom(muim, Cnt['SCTSCLMU'], order=3) #(0.499, 0.5, 0.5) emim = ndi.filters.gaussian_filter(em, fwhm2sig(0.42, Cnt), mode='mirror') emim = ndi.interpolation.zoom(emim, Cnt['SCTSCLEM'], order=3) #(0.34, 0.33, 0.33) #emim = ndi.interpolation.zoom( emim, (0.499, 0.5, 0.5), order=3 ) #-smooth the mu-map for mask creation. the mask contains voxels for which attenuation ray LUT is found. smomu = ndi.filters.gaussian_filter(muim, fwhm2sig(0.84, Cnt), mode='mirror') mumsk = np.int8(smomu > 0.003) #CORE SCATTER ESTIMATION NSCRS, NSRNG = 64, 8 sctout = { 'xsxu': np.zeros((NSCRS, NSCRS / 2), dtype=np.int8), #one when xs>xu, otherwise zero 'bin_indx': np.zeros((NSCRS, NSCRS / 2), dtype=np.int32), 'sct_val': np.zeros((Cnt['TOFBINN'], NSRNG, NSCRS, NSRNG, NSCRS / 2), dtype=np.float32), 'sct_3d': np.zeros((Cnt['TOFBINN'], snno_, NSCRS, NSCRS / 2), dtype=np.float32) } #<<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>> petsct.scatter(sctout, muim, mumsk, emim, sctLUT, txLUT, axLUT, Cnt) #<<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>> sct3d = sctout['sct_3d'] sctind = sctout['bin_indx'] log.debug('total scatter sum:%r' % np.sum(sct3d)) if np.sum(sct3d) < 1e-04: sss = np.zeros((snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) amsksn = np.zeros((snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) sssr = np.zeros((Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) return sss, sssr, amsksn #> get SSR for randoms from span-1 or span-11 rssr = np.zeros((Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) for i in range(snno): rssr[ssrlut[i], :, :] += rsinos[i, :, :] #ATTENUATION FRACTIONS for scatter only regions, and NORMALISATION for all SCATTER #<<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>> currentspan = Cnt['SPN'] Cnt['SPN'] = 1 atto = np.zeros((txLUT['Naw'], Cnt['NSN1']), dtype=np.float32) petprj.fprj(atto, mu_sctonly, txLUT, axLUT, np.array([-1], dtype=np.int32), Cnt, 1) atto = mmraux.putgaps(atto, txLUT, Cnt) #-------------------------------------------------------------- #get norm components setting the geometry and axial to ones as they are accounted for differently nrmcmp['geo'][:] = 1 nrmcmp['axe1'][:] = 1 #get sino with no gaps nrmg = np.zeros((txLUT['Naw'], Cnt['NSN1']), dtype=np.float32) mmr_auxe.norm(nrmg, nrmcmp, hst['buckets'], axLUT, txLUT['aw2ali'], Cnt) nrm = mmraux.putgaps(nrmg, txLUT, Cnt) #-------------------------------------------------------------- #get attenuation + norm in (span-11) and SSR attossr = np.zeros((Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) nrmsssr = np.zeros((Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) for i in range(Cnt['NSN1']): si = axLUT['sn1_ssrb'][i] attossr[si, :, :] += atto[i, :, :] / float(axLUT['sn1_ssrno'][si]) nrmsssr[si, :, :] += nrm[i, :, :] / float(axLUT['sn1_ssrno'][si]) if currentspan == 11: Cnt['SPN'] = 11 nrmg = np.zeros((txLUT['Naw'], snno), dtype=np.float32) mmr_auxe.norm(nrmg, nrmcmp, hst['buckets'], axLUT, txLUT['aw2ali'], Cnt) nrm = mmraux.putgaps(nrmg, txLUT, Cnt) #-------------------------------------------------------------- #get the mask for the object from uncorrected emission image if emmsk and os.path.isfile(datain['em_nocrr']): nim = nib.load(datain['em_nocrr']) A = nim.get_sform() eim = np.float32(nim.get_data()) eim = eim[:, ::-1, ::-1] eim = np.transpose(eim, (2, 1, 0)) em_sctonly = ndi.filters.gaussian_filter(eim, fwhm2sig(.6, Cnt), mode='mirror') msk = np.float32(em_sctonly > 0.07 * np.max(em_sctonly)) msk = ndi.filters.gaussian_filter(msk, fwhm2sig(.6, Cnt), mode='mirror') msk = np.float32(msk > 0.01) msksn = mmrprj.frwd_prj(msk, txLUT, axLUT, Cnt) mssr = mmraux.sino2ssr(msksn, axLUT, Cnt) mssr = mssr > 0 else: mssr = np.zeros((Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.bool) #<<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>><<+>> #-------------------------------------------------------------------------------------------- # get scatter sinos for TOF or non-TOF if Cnt['TOFBINN'] > 1: ssn = np.zeros((Cnt['TOFBINN'], snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float64) sssr = np.zeros( (Cnt['TOFBINN'], Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) tmp2d = np.zeros((Cnt['NSANGLES'] * Cnt['NSBINS']), dtype=np.float64) log.info('interpolate each scatter sino...') for k in range(Cnt['TOFBINN']): log.info('doing TOF bin k = %d' % k) for i in range(snno): tmp2d[:] = 0 for ti in range(len(sctind)): tmp2d[sctind[ti]] += sct3d[k, i, ti] #interpolate estimated scatter ssn[k, i, :, :] = get_sctinterp( np.reshape(tmp2d, (Cnt['NSANGLES'], Cnt['NSBINS'])), sctind, Cnt) sssr[k, ssrlut[i], :, :] += ssn[k, i, :, :] log.info('TOF bin #%d' % k) elif Cnt['TOFBINN'] == 1: ssn = np.zeros((snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) sssr = np.zeros((Cnt['NSEG0'], Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) tmp2d = np.zeros((Cnt['NSANGLES'] * Cnt['NSBINS']), dtype=np.float32) log.info('scatter sinogram interpolation...') for i in trange(snno, desc="interpolating", unit="sinogram", leave=log.getEffectiveLevel() < logging.INFO): tmp2d[:] = 0 for ti in range(len(sctind)): tmp2d[sctind[ti]] += sct3d[0, i, ti] #interpolate estimated scatter ssn[i, :, :] = get_sctinterp( np.reshape(tmp2d, (Cnt['NSANGLES'], Cnt['NSBINS'])), sctind, Cnt) sssr[ssrlut[i], :, :] += ssn[i, :, :] #-------------------------------------------------------------------------------------------- #=== scale scatter for ssr and non-TOF=== #mask rmsk = (txLUT['msino'] > 0).T rmsk.shape = (1, Cnt['NSANGLES'], Cnt['NSBINS']) rmsk = np.repeat(rmsk, Cnt['NSEG0'], axis=0) amsksn = np.logical_and(attossr >= 0.999, rmsk) * ~mssr #scaling factors for ssr scl_ssr = np.zeros((Cnt['NSEG0']), dtype=np.float32) for sni in range(Cnt['NSEG0']): # region of choice for scaling thrshld = prcnt_scl * np.max(sssr[sni, :, :]) amsksn[sni, :, :] *= (sssr[sni, :, :] > thrshld) amsk = amsksn[sni, :, :] #normalised estimated scatter mssn = sssr[sni, :, :] * nrmsssr[sni, :, :] mssn[np.invert(amsk)] = 0 #vectorised masked sino vssn = mssn[amsk] vpsn = hst['pssr'][sni, amsk] - rssr[sni, amsk] scl_ssr[sni] = np.sum(vpsn) / np.sum(mssn) #ssr output sssr[sni, :, :] *= nrmsssr[sni, :, :] * scl_ssr[sni] #=== scale scatter for the proper sino === sss = np.zeros((snno, Cnt['NSANGLES'], Cnt['NSBINS']), dtype=np.float32) for i in range(snno): sss[i, :, :] = ssn[i, :, :] * scl_ssr[ssrlut[i]] * saxnrm[i] * nrm[ i, :, :] out = {} if return_uninterp: out['uninterp'] = sct3d out['indexes'] = sctind if return_ssrb: out['ssrb'] = sssr if return_mask: out['mask'] = amsksn if not out: return sss else: out['sino'] = sss return out
def frwd_prj(im, scanner_params, isub=np.array([-1], dtype=np.int32), dev_out=False, attenuation=False): ''' Calculate forward projection (a set of sinograms) for the provided input image. Arguments: im -- input image (can be emission or mu-map image). scanner_params -- dictionary of all scanner parameters, containing scanner constants, transaxial and axial look up tables (LUT). isub -- array of transaxial indices of all sinograms (angles x bins) used for subsets. when the first element is negative, all transaxial bins are used (as in pure EM-ML). dev_out -- if True, output sinogram is in the device form, i.e., with two dimensions (# bins/angles, # sinograms) instead of default three (# sinograms, # bins, # angles). attenuation -- controls whether emission or LOR attenuation probability sinogram is calculated; the default is False, meaning emission sinogram; for attenuation calculations (attenuation=True), the exponential of the negative of the integrated mu-values along LOR path is taken at the end. ''' log = logging.getLogger(__name__) # Get particular scanner parameters: Constants, transaxial and axial LUTs Cnt = scanner_params['Cnt'] txLUT = scanner_params['txLUT'] axLUT = scanner_params['axLUT'] #>choose between attenuation forward projection (mu-map is the input) #>or the default for emission image forward projection if attenuation: att = 1 else: att = 0 if Cnt['SPN'] == 1: # number of rings calculated for the given ring range (optionally we can use only part of the axial FOV) NRNG_c = Cnt['RNG_END'] - Cnt['RNG_STRT'] # number of sinos in span-1 nsinos = NRNG_c**2 # correct for the max. ring difference in the full axial extent (don't use ring range (1,63) as for this case no correction) if NRNG_c == 64: nsinos -= 12 elif Cnt['SPN'] == 11: nsinos = Cnt['NSN11'] elif Cnt['SPN'] == 0: nsinos = Cnt['NSEG0'] if im.shape[0] == Cnt['SO_IMZ'] and im.shape[1] == Cnt[ 'SO_IMY'] and im.shape[2] == Cnt['SO_IMX']: ims = mmrimg.convert2dev(im, Cnt) elif im.shape[0] == Cnt['SZ_IMX'] and im.shape[1] == Cnt[ 'SZ_IMY'] and im.shape[2] == Cnt['SZ_IMZ']: ims = im elif im.shape[0] == Cnt['rSO_IMZ'] and im.shape[1] == Cnt[ 'SO_IMY'] and im.shape[2] == Cnt['SO_IMX']: ims = mmrimg.convert2dev(im, Cnt) elif im.shape[0] == Cnt['SZ_IMX'] and im.shape[1] == Cnt[ 'SZ_IMY'] and im.shape[2] == Cnt['rSZ_IMZ']: ims = im else: log.error( 'wrong image size; it has to be one of these: (z,y,x) = (127,344,344) or (y,x,z) = (320,320,128)' ) log.debug('number of sinos:%d' % nsinos) #predefine the sinogram. if subsets are used then only preallocate those bins which will be used. if isub[0] < 0: sinog = np.zeros((txLUT['Naw'], nsinos), dtype=np.float32) else: sinog = np.zeros((len(isub), nsinos), dtype=np.float32) # -------------------- petprj.fprj(sinog, ims, txLUT, axLUT, isub, Cnt, att) # -------------------- # get the sinogram bins in a proper sinogram sino = np.zeros((txLUT['Naw'], nsinos), dtype=np.float32) if isub[0] >= 0: sino[isub, :] = sinog else: sino = sinog # put the gaps back to form displayable sinogram if not dev_out: sino = mmraux.putgaps(sino, txLUT, Cnt) return sino