def test_calculate_bins(): target = np.array(['2018-01-01 00:00', '2018-01-01 01:00', '2018-01-01 02:00', '2018-01-01 03:00', '2018-01-01 04:00', '2018-01-01 05:00', '2018-01-01 06:00', '2018-01-01 07:00', '2018-01-01 08:00']) df = setup_dataframe.create_dataframe() bins = EDA_countplot.calculate_bins(df,'H').values assert (bins == target).all()
def test_punchcard_two_users(): df = setup_dataframe.create_dataframe() user_list = ['user_1', 'user_2'] columns = ['col_1'] title = 'test_title' resample = "D" fig = EDA_punchcard.punchcard_plot(df, user_list, columns, title, resample) assert (type(fig) == plotly.graph_objs._figure.Figure)
def test_punchcard_one_user(): df = setup_dataframe.create_dataframe() user_list = ['user_1'] columns = ['col_1'] title = 'test_title' resample = "D" fig = EDA_punchcard.punchcard_plot(df, user_list, columns, title, resample) assert (type(fig) == plotly.graph_objs._figure.Figure) assert (type(fig) == plotly.graph_objs._figure.Figure) assert (fig.layout.xaxis.nticks == 31) assert (fig.layout.title.text == 'test_title')
def test_EDA_countplot_subject(): df = setup_dataframe.create_dataframe() fig = EDA_countplot.EDA_countplot(df, fig_title = 'Test_title', plot_type = 'count', points = 'all', aggregation = 'user', user = None, column = None, binning=False) assert (type(fig) == plotly.graph_objs._figure.Figure)
def test_EDA_countplot_value(): df = setup_dataframe.create_dataframe() fig = EDA_countplot.EDA_countplot(df, fig_title = 'Test_title', plot_type = 'value', points = 'all', aggregation = 'group', user = None, column='col_1', binning='H') assert (type(fig) == plotly.graph_objs._figure.Figure)
def test_punchcard_one_user_two_columns(): df = setup_dataframe.create_dataframe() user_list = ['user_1'] columns = ['col_1', 'col_2'] title = 'test_title' resample = "D" normalize = True fig = EDA_punchcard.punchcard_plot(df, user_list, columns, title, resample, normalize) assert (type(fig) == plotly.graph_objs._figure.Figure) assert (fig.layout.legend.x == None) assert (fig.layout.legend.y == None)
def test_punchcard_two_users_timerange(): df = setup_dataframe.create_dataframe() user_list = ['user_1', 'user_2'] columns = ['col_1'] title = 'test_title' resample = "D" normalize = False agg_function = np.mean timerange = ('20171231', '20180101') fig = EDA_punchcard.punchcard_plot(df, user_list, columns, title, resample, normalize, agg_function, timerange) assert (type(fig) == plotly.graph_objs._figure.Figure) assert (fig.data[0].x == datetime.datetime(2018, 1, 1, 0, 0))
def test_timeplot_two_users_and_columns(): df = setup_dataframe.create_dataframe() fig = EDA_lineplot.timeplot(df, users=['user_1','user_2'], columns=['col_1','col_2'], title='Test title', xlabel='Xlabel', ylabel='Ylabel', resample='H', interpolate=True, window=1, reset_index=False, by='hour' ) assert (type(fig) == plotly.graph_objs._figure.Figure)
def test_group_averages(): df = setup_dataframe.create_dataframe() #df = df.rename_axis('timestamp') fig = EDA_lineplot.timeplot(df, users='Group', columns=['col_1'], title='Test title', xlabel='Xlabel', ylabel='Ylabel', resample='D', interpolate=True, window=1, reset_index=False, by='weekday' ) assert (type(fig) == plotly.graph_objs._figure.Figure)
def test_get_counts(): df = setup_dataframe.create_dataframe() group_counts = EDA_countplot.get_counts(df,'group') user_counts = EDA_countplot.get_counts(df,'user') assert (group_counts['values'].values == np.array([3,3,3])).all() assert (user_counts['values'].values == np.ones(9)).all()