def denoise(img_file, tsv_file, out_path, col_names=False, hp_filter=False, lp_filter=False, out_figure_path=False): nii_ext = '.nii.gz' FD_thr = [.5] sc_range = np.arange(-1, 3) constant = 'constant' # read in files img = load_niimg(img_file) # get file info img_name = os.path.basename(img.get_filename()) file_base = img_name[0:img_name.find('.')] save_img_file = pjoin(out_path, file_base + \ '_NR' + nii_ext) data = img.get_data() df_orig = pandas.read_csv(tsv_file, '\t', na_values='n/a') df = copy.deepcopy(df_orig) Ntrs = df.as_matrix().shape[0] print('# of TRs: ' + str(Ntrs)) assert (Ntrs == data.shape[len(data.shape) - 1]) # select columns to use as nuisance regressors if col_names: df = df[col_names] str_append = ' [SELECTED regressors in CSV]' else: col_names = df.columns.tolist() str_append = ' [ALL regressors in CSV]' # fill in missing nuisance values with mean for that variable for col in df.columns: if sum(df[col].isnull()) > 0: print('Filling in ' + str(sum(df[col].isnull())) + ' NaN value for ' + col) df[col] = df[col].fillna(np.mean(df[col])) print('# of Confound Regressors: ' + str(len(df.columns)) + str_append) # implement HP filter in regression TR = img.header.get_zooms()[-1] frame_times = np.arange(Ntrs) * TR if hp_filter: hp_filter = float(hp_filter) assert (hp_filter > 0) period_cutoff = 1. / hp_filter df = make_first_level_design_matrix(frame_times, period_cut=period_cutoff, add_regs=df.as_matrix(), add_reg_names=df.columns.tolist()) # fn adds intercept into dm hp_cols = [col for col in df.columns if 'drift' in col] print('# of High-pass Filter Regressors: ' + str(len(hp_cols))) else: # add in intercept column into data frame df[constant] = 1 print('No High-pass Filter Applied') dm = df.as_matrix() # prep data data = np.reshape(data, (-1, Ntrs)) data_mean = np.mean(data, axis=1) Nvox = len(data_mean) # setup and run regression model = regression.OLSModel(dm) results = model.fit(data.T) if not hp_filter: results_orig_resid = copy.deepcopy(results.resid) # save for rsquared computation # apply low-pass filter if lp_filter: # input to butterworth fn is time x voxels low_pass = float(lp_filter) Fs = 1. / TR if low_pass >= Fs / 2: raise ValueError('Low pass filter cutoff if too close to the Nyquist frequency (%s)' % (Fs / 2)) temp_img_file = pjoin(out_path, file_base + \ '_temp' + nii_ext) temp_img = nb.Nifti1Image(np.reshape(results.resid.T + np.reshape(data_mean, (Nvox, 1)), img.shape).astype('float32'), img.affine, header=img.header) temp_img.to_filename(temp_img_file) results.resid = butterworth(results.resid, sampling_rate=Fs, low_pass=low_pass, high_pass=None) print('Low-pass Filter Applied: < ' + str(low_pass) + ' Hz') # add mean back into data clean_data = results.resid.T + np.reshape(data_mean, (Nvox, 1)) # add mean back into residuals # save out new data file print('Saving output file...') clean_data = np.reshape(clean_data, img.shape).astype('float32') new_img = nb.Nifti1Image(clean_data, img.affine, header=img.header) new_img.to_filename(save_img_file) ######### generate Rsquared map for confounds only if hp_filter: # first remove low-frequency information from data hp_cols.append(constant) model_first = regression.OLSModel(df[hp_cols].as_matrix()) results_first = model_first.fit(data.T) results_first_resid = copy.deepcopy(results_first.resid) del results_first, model_first # compute sst - borrowed from matlab sst = np.square(np.linalg.norm(results_first_resid - np.mean(results_first_resid, axis=0), axis=0)) # now regress out 'true' confounds to estimate their Rsquared nr_cols = [col for col in df.columns if 'drift' not in col] model_second = regression.OLSModel(df[nr_cols].as_matrix()) results_second = model_second.fit(results_first_resid) # compute sse - borrowed from matlab sse = np.square(np.linalg.norm(results_second.resid, axis=0)) del results_second, model_second, results_first_resid elif not hp_filter: # compute sst - borrowed from matlab sst = np.square(np.linalg.norm(data.T - np.mean(data.T, axis=0), axis=0)) # compute sse - borrowed from matlab sse = np.square(np.linalg.norm(results_orig_resid, axis=0)) del results_orig_resid # compute rsquared of nuisance regressors zero_idx = scipy.logical_and(sst == 0, sse == 0) sse[zero_idx] = 1 sst[zero_idx] = 1 # would be NaNs - become rsquared = 0 rsquare = 1 - np.true_divide(sse, sst) rsquare[np.isnan(rsquare)] = 0 ######### Visualizing DM & outputs fontsize = 12 fontsize_title = 14 def_img_size = 8 if not out_figure_path: out_figure_path = save_img_file[0:save_img_file.find('.')] + '_figures' if not os.path.isdir(out_figure_path): os.mkdir(out_figure_path) png_append = '_' + img_name[0:img_name.find('.')] + '.png' print('Output directory: ' + out_figure_path) # DM corr matrix cm = df[df.columns[0:-1]].corr() curr_sz = copy.deepcopy(def_img_size) if cm.shape[0] > def_img_size: curr_sz = curr_sz + ((cm.shape[0] - curr_sz) * .3) mtx_scale = curr_sz * 100 mask = np.zeros_like(cm, dtype=np.bool) mask[np.triu_indices_from(mask)] = True fig, ax = plt.subplots(figsize=(curr_sz, curr_sz)) cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(cm, mask=mask, cmap=cmap, center=0, vmax=cm[cm < 1].max().max(), vmin=cm[cm < 1].min().min(), square=True, linewidths=.5, cbar_kws={"shrink": .6}) ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize) ax.set_yticklabels(cm.columns.tolist(), rotation=-30, va='bottom', fontsize=fontsize) ax.set_title('Nuisance Corr. Matrix', fontsize=fontsize_title) plt.tight_layout() file_corr_matrix = 'Corr_matrix_regressors' + png_append fig.savefig(pjoin(out_figure_path, file_corr_matrix)) plt.close(fig) del fig, ax # DM of Nuisance Regressors (all) tr_label = 'TR (Volume #)' fig, ax = plt.subplots(figsize=(curr_sz - 4.1, def_img_size)) x_scale_html = ((curr_sz - 4.1) / def_img_size) * 890 reporting.plot_design_matrix(df, ax=ax) ax.set_title('Nuisance Design Matrix', fontsize=fontsize_title) ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize) ax.set_yticklabels(ax.get_yticklabels(), fontsize=fontsize) ax.set_ylabel(tr_label, fontsize=fontsize) plt.tight_layout() file_design_matrix = 'Design_matrix' + png_append fig.savefig(pjoin(out_figure_path, file_design_matrix)) plt.close(fig) del fig, ax # FD timeseries plot FD = 'FD' poss_names = ['FramewiseDisplacement', FD, 'framewisedisplacement', 'fd'] fd_idx = [df_orig.columns.__contains__(i) for i in poss_names] if np.sum(fd_idx) > 0: FD_name = poss_names[fd_idx == True] if sum(df_orig[FD_name].isnull()) > 0: df_orig[FD_name] = df_orig[FD_name].fillna(np.mean(df_orig[FD_name])) y = df_orig[FD_name].as_matrix() Nremove = [] sc_idx = [] for thr_idx, thr in enumerate(FD_thr): idx = y >= thr sc_idx.append(copy.deepcopy(idx)) for iidx in np.where(idx)[0]: for buffer in sc_range: curr_idx = iidx + buffer if curr_idx >= 0 and curr_idx <= len(idx): sc_idx[thr_idx][curr_idx] = True Nremove.append(np.sum(sc_idx[thr_idx])) Nplots = len(FD_thr) sns.set(font_scale=1.5) sns.set_style('ticks') fig, axes = plt.subplots(Nplots, 1, figsize=(def_img_size * 1.5, def_img_size / 2), squeeze=False) sns.despine() bound = .4 fd_mean = np.mean(y) for curr in np.arange(0, Nplots): axes[curr, 0].plot(y) axes[curr, 0].plot((-bound, Ntrs + bound), FD_thr[curr] * np.ones((1, 2))[0], '--', color='black') axes[curr, 0].scatter(np.arange(0, Ntrs), y, s=20) if Nremove[curr] > 0: info = scipy.ndimage.measurements.label(sc_idx[curr]) for cluster in np.arange(1, info[1] + 1): temp = np.where(info[0] == cluster)[0] axes[curr, 0].axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red') axes[curr, 0].set_ylabel('Framewise Disp. (' + FD + ')') axes[curr, 0].set_title(FD + ': ' + str(100 * Nremove[curr] / Ntrs)[0:4] + '% of scan (' + str(Nremove[curr]) + ' volumes) would be scrubbed (FD thr.= ' + str(FD_thr[curr]) + ')') plt.text(Ntrs + 1, FD_thr[curr] - .01, FD + ' = ' + str(FD_thr[curr]), fontsize=fontsize) plt.text(Ntrs, fd_mean - .01, 'avg = ' + str(fd_mean), fontsize=fontsize) axes[curr, 0].set_xlim((-bound, Ntrs + 8)) plt.tight_layout() axes[curr, 0].set_xlabel(tr_label) file_fd_plot = FD + '_timeseries' + png_append fig.savefig(pjoin(out_figure_path, file_fd_plot)) plt.close(fig) del fig, axes print(FD + ' timeseries plot saved') else: print(FD + ' not found: ' + FD + ' timeseries not plotted') file_fd_plot = None # Carpet and DVARS plots - before & after nuisance regression # need to create mask file to input to DVARS function mask_file = pjoin(out_figure_path, 'mask_temp.nii.gz') nifti_masker = NiftiMasker(mask_strategy='epi', standardize=False) nifti_masker.fit(img) nifti_masker.mask_img_.to_filename(mask_file) # create 2 or 3 carpet plots, depending on if LP filter is also applied Ncarpet = 2 total_sz = int(16) carpet_scale = 840 y_labels = ['Input (voxels)', 'Output \'cleaned\''] imgs = [img, new_img] img_files = [img_file, save_img_file] color = ['red', 'salmon'] labels = ['input', 'cleaned'] if lp_filter: Ncarpet = 3 total_sz = int(20) carpet_scale = carpet_scale * (9/8) y_labels = ['Input', 'Clean Pre-LP', 'Clean LP'] imgs.insert(1, temp_img) img_files.insert(1, temp_img_file) color.insert(1, 'firebrick') labels.insert(1, 'clean pre-LP') labels[-1] = 'clean LP' dvars = [] print('Computing dvars...') for in_file in img_files: temp = nac.compute_dvars(in_file=in_file, in_mask=mask_file)[1] dvars.append(np.hstack((temp.mean(), temp))) del temp small_sz = 2 fig = plt.figure(figsize=(def_img_size * 1.5, def_img_size + ((Ncarpet - 2) * 1))) row_used = 0 if np.sum(fd_idx) > 0: # if FD data is available row_used = row_used + small_sz ax0 = plt.subplot2grid((total_sz, 1), (0, 0), rowspan=small_sz) ax0.plot(y) ax0.scatter(np.arange(0, Ntrs), y, s=10) curr = 0 if Nremove[curr] > 0: info = scipy.ndimage.measurements.label(sc_idx[curr]) for cluster in np.arange(1, info[1] + 1): temp = np.where(info[0] == cluster)[0] ax0.axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red') ax0.set_ylabel(FD) for side in ["top", "right", "bottom"]: ax0.spines[side].set_color('none') ax0.spines[side].set_visible(False) ax0.set_xticks([]) ax0.set_xlim((-.5, Ntrs - .5)) ax0.spines["left"].set_position(('outward', 10)) ax_d = plt.subplot2grid((total_sz, 1), (row_used, 0), rowspan=small_sz) for iplot in np.arange(len(dvars)): ax_d.plot(dvars[iplot], color=color[iplot], label=labels[iplot]) ax_d.set_ylabel('DVARS') for side in ["top", "right", "bottom"]: ax_d.spines[side].set_color('none') ax_d.spines[side].set_visible(False) ax_d.set_xticks([]) ax_d.set_xlim((-.5, Ntrs - .5)) ax_d.spines["left"].set_position(('outward', 10)) ax_d.legend(fontsize=fontsize - 2) row_used = row_used + small_sz st = 0 carpet_each = int((total_sz - row_used) / Ncarpet) for idx, img_curr in enumerate(imgs): ax_curr = plt.subplot2grid((total_sz, 1), (row_used + st, 0), rowspan=carpet_each) fig = plotting.plot_carpet(img_curr, figure=fig, axes=ax_curr) ax_curr.set_ylabel(y_labels[idx]) for side in ["bottom", "left"]: ax_curr.spines[side].set_position(('outward', 10)) if idx < len(imgs)-1: ax_curr.spines["bottom"].set_visible(False) ax_curr.set_xticklabels('') ax_curr.set_xlabel('') st = st + carpet_each file_carpet_plot = 'Carpet_plots' + png_append fig.savefig(pjoin(out_figure_path, file_carpet_plot)) plt.close() del fig, ax0, ax_curr, ax_d, dvars os.remove(mask_file) print('Carpet/DVARS plots saved') if lp_filter: os.remove(temp_img_file) del temp_img # Display T-stat maps for nuisance regressors # create mean img img_size = (img.shape[0], img.shape[1], img.shape[2]) mean_img = nb.Nifti1Image(np.reshape(data_mean, img_size), img.affine) mx = [] for idx, col in enumerate(df.columns): if not 'drift' in col and not constant in col: con_vector = np.zeros((1, df.shape[1])) con_vector[0, idx] = 1 con = results.Tcontrast(con_vector) mx.append(np.max(np.absolute([con.t.min(), con.t.max()]))) mx = .8 * np.max(mx) t_png = 'Tstat_' file_tstat = [] for idx, col in enumerate(df.columns): if not 'drift' in col and not constant in col: con_vector = np.zeros((1, df.shape[1])) con_vector[0, idx] = 1 con = results.Tcontrast(con_vector) m_img = nb.Nifti1Image(np.reshape(con, img_size), img.affine) title_str = col + ' Tstat' fig = plotting.plot_stat_map(m_img, mean_img, threshold=3, colorbar=True, display_mode='z', vmax=mx, title=title_str, cut_coords=7) file_temp = t_png + col + png_append fig.savefig(pjoin(out_figure_path, file_temp)) file_tstat.append({'name': col, 'file': file_temp}) plt.close() del fig, file_temp print(title_str + ' map saved') # Display R-sq map for nuisance regressors m_img = nb.Nifti1Image(np.reshape(rsquare, img_size), img.affine) title_str = 'Nuisance Rsq' mx = .95 * rsquare.max() fig = plotting.plot_stat_map(m_img, mean_img, threshold=.2, colorbar=True, display_mode='z', vmax=mx, title=title_str, cut_coords=7) file_rsq_map = 'Rsquared' + png_append fig.savefig(pjoin(out_figure_path, file_rsq_map)) plt.close() del fig print(title_str + ' map saved') ######### html report templateLoader = jinja2.FileSystemLoader(searchpath="/") templateEnv = jinja2.Environment(loader=templateLoader) templateVars = {"img_file": img_file, "save_img_file": save_img_file, "Ntrs": Ntrs, "tsv_file": tsv_file, "col_names": col_names, "hp_filter": hp_filter, "lp_filter": lp_filter, "file_design_matrix": file_design_matrix, "file_corr_matrix": file_corr_matrix, "file_fd_plot": file_fd_plot, "file_rsq_map": file_rsq_map, "file_tstat": file_tstat, "x_scale": x_scale_html, "mtx_scale": mtx_scale, "file_carpet_plot": file_carpet_plot, "carpet_scale": carpet_scale } TEMPLATE_FILE = pjoin(os.getcwd(), "report_template.html") template = templateEnv.get_template(TEMPLATE_FILE) outputText = template.render(templateVars) html_file = pjoin(out_figure_path, img_name[0:img_name.find('.')] + '.html') with open(html_file, "w") as f: f.write(outputText) print('') print('HTML report: ' + html_file) return new_img
def denoise(img_file, tsv_file, out_path, col_names=False, hp_filter=False, lp_filter=False, out_figure_path=False): nii_ext = '.nii.gz' FD_thr = [.5] sc_range = np.arange(-1, 3) constant = 'constant' # get file info base_file = os.path.basename(img_file) save_img_file = pjoin(out_path, base_file[0:base_file.find('.')] + \ '_NR' + nii_ext) # read in files img = load_niimg(img_file) data = img.get_data() df = pandas.read_csv(tsv_file, '\t', na_values='n/a') Ntrs = df.as_matrix().shape[0] print('# of TRs: ' + str(Ntrs)) assert (Ntrs == data.shape[len(data.shape) - 1]) # select columns to use as nuisance regressors str_append = ' [ALL regressors in CSV]' if col_names: df = df[col_names] str_append = ' [SELECTED regressors in CSV]' # fill in missing nuisance values with mean for that variable for col in df.columns: if sum(df[col].isnull()) > 0: print('Filling in ' + str(sum(df[col].isnull())) + ' NaN value for ' + col) df[col] = df[col].fillna(np.mean(df[col])) print('# of Confound Regressors: ' + str(len(df.columns)) + str_append) # implement HP filter in regression TR = img.header.get_zooms()[-1] frame_times = np.arange(Ntrs) * TR if hp_filter: hp_filter = float(hp_filter) assert (hp_filter > 0) period_cutoff = 1. / hp_filter df = make_design_matrix(frame_times, period_cut=period_cutoff, add_regs=df.as_matrix(), add_reg_names=df.columns.tolist()) # fn adds intercept into dm hp_cols = [col for col in df.columns if 'drift' in col] print('# of High-pass Filter Regressors: ' + str(len(hp_cols))) else: # add in intercept column into data frame df[constant] = 1 dm = df.as_matrix() # prep data data = np.reshape(data, (-1, Ntrs)) data_mean = np.mean(data, axis=1) Nvox = len(data_mean) # setup and run regression model = regression.OLSModel(dm) results = model.fit(data.T) if not hp_filter: results_orig_resid = copy.deepcopy( results.resid) # save for rsquared computation # apply low-pass filter if lp_filter: # input to butterworth fn is time x voxels low_pass = float(lp_filter) Fs = 1. / TR if low_pass >= Fs / 2: raise ValueError( 'Low pass filter cutoff if too close to the Nyquist frequency (%s)' % (Fs / 2)) results.resid = butterworth(results.resid, sampling_rate=Fs, low_pass=low_pass, high_pass=None) # add mean back into data clean_data = results.resid.T + np.reshape( data_mean, (Nvox, 1)) # add mean back into residuals # save out new data file clean_data = np.reshape(clean_data, img.shape).astype('float32') #new_img = nb.Nifti1Image(clean_data, img.affine) #inherit header from original new_header = header = img.header.copy() new_img = nb.Nifti1Image(clean_data, None, header=new_header) new_img.to_filename(save_img_file) ######### generate Rsquared map for confounds only if hp_filter: # first remove low-frequency information from data hp_cols.append(constant) model_first = regression.OLSModel(df[hp_cols].as_matrix()) results_first = model_first.fit(data.T) results_first_resid = copy.deepcopy(results_first.resid) del results_first, model_first # compute sst - borrowed from matlab sst = np.square( np.linalg.norm(results_first_resid - np.mean(results_first_resid, axis=0), axis=0)) # now regress out 'true' confounds to estimate their Rsquared nr_cols = [col for col in df.columns if 'drift' not in col] model_second = regression.OLSModel(df[nr_cols].as_matrix()) results_second = model_second.fit(results_first_resid) # compute sse - borrowed from matlab sse = np.square(np.linalg.norm(results_second.resid, axis=0)) del results_second, model_second, results_first_resid elif not hp_filter: # compute sst - borrowed from matlab sst = np.square( np.linalg.norm(data.T - np.mean(data.T, axis=0), axis=0)) # compute sse - borrowed from matlab sse = np.square(np.linalg.norm(results_orig_resid, axis=0)) del results_orig_resid # compute rsquared of nuisance regressors zero_idx = scipy.logical_and(sst == 0, sse == 0) sse[zero_idx] = 1 sst[zero_idx] = 1 # would be NaNs - become rsquared = 0 rsquare = 1 - np.true_divide(sse, sst) rsquare[np.isnan(rsquare)] = 0 ######### Visualizing DM & outputs fontsize = 12 fontsize_title = 14 if not out_figure_path: out_figure_path = save_img_file[0:save_img_file.find('.')] + '_figures' if not os.path.isdir(out_figure_path): os.mkdir(out_figure_path) img_name = os.path.basename(img_file) png_append = '_' + img_name[0:img_name.find('.')] + '.png' # DM corr matrix cm = df[df.columns[0:-1]].corr() mask = np.zeros_like(cm, dtype=np.bool) mask[np.triu_indices_from(mask)] = True sz = 8 if cm.shape[0] > sz: sz = sz + ((cm.shape[0] - sz) * .3) fig, ax = plt.subplots(figsize=(sz, sz)) cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(cm, mask=mask, cmap=cmap, center=0, vmax=cm[cm < 1].max().max(), vmin=cm[cm < 1].min().min(), square=True, linewidths=.5, cbar_kws={"shrink": .6}) ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize) ax.set_yticklabels(cm.columns.tolist(), rotation=-30, va='bottom', fontsize=fontsize) ax.set_title('Nuisance Corr. Matrix', fontsize=fontsize_title) plt.tight_layout() fig.savefig(pjoin(out_figure_path, 'Corr_matrix_regressors' + png_append)) plt.close(fig) del fig, ax # DM of Nuisance Regressors (all) tr_label = 'TR (Volume #)' fig, ax = plt.subplots(figsize=(4, sz)) reporting.plot_design_matrix(df, ax=ax) ax.set_title('Nuisance Design Matrix', fontsize=fontsize_title) ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize) ax.set_yticklabels(ax.get_yticklabels(), fontsize=fontsize) ax.set_ylabel(tr_label, fontsize=fontsize) plt.tight_layout() fig.savefig(pjoin(out_figure_path, 'Design_matrix' + png_append)) plt.close(fig) del fig, ax # FD timeseries plot FD = 'FD' poss_names = ['FramewiseDisplacement', FD, 'framewisedisplacement', 'fd'] idx = [df.columns.__contains__(i) for i in poss_names] FD_name = poss_names[idx == True] y = df[FD_name].as_matrix() Nremove = [] sc_idx = [] for thr_idx, thr in enumerate(FD_thr): idx = y >= thr sc_idx.append(copy.deepcopy(idx)) for iidx in np.where(idx)[0]: for buffer in sc_range: curr_idx = iidx + buffer if curr_idx >= 0 and curr_idx <= len(idx): sc_idx[thr_idx][curr_idx] = True Nremove.append(np.sum(sc_idx[thr_idx])) Nplots = len(FD_thr) sns.set(font_scale=1.5) sns.set_style('ticks') fig, axes = plt.subplots(Nplots, 1, figsize=(12, 4), squeeze=False) sns.despine() bound = .4 for curr in np.arange(0, Nplots): axes[curr, 0].plot(y) axes[curr, 0].plot((-bound, Ntrs + bound), FD_thr[curr] * np.ones((1, 2))[0], '--', color='black') axes[curr, 0].scatter(np.arange(0, Ntrs), y, s=20) if Nremove[curr] > 0: info = scipy.ndimage.measurements.label(sc_idx[curr]) for cluster in np.arange(1, info[1] + 1): temp = np.where(info[0] == cluster)[0] axes[curr, 0].axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red') axes[curr, 0].set_ylabel('Framewise Disp. (' + FD + ')') axes[curr, 0].set_title(FD + ': ' + str(100 * Nremove[curr] / Ntrs)[0:4] + '% of scan (' + str(Nremove[curr]) + ' volumes) would be scrubbed (FD thr.= ' + str(FD_thr[curr]) + ')') plt.text(Ntrs + 1, FD_thr[curr] - .01, FD + ' = ' + str(FD_thr[curr]), fontsize=fontsize) axes[curr, 0].set_xlim((-bound, Ntrs + 8)) plt.tight_layout() axes[curr, 0].set_xlabel(tr_label) fig.savefig(pjoin(out_figure_path, FD + '_timeseries' + png_append)) plt.close(fig) del fig, axes # Display T-stat maps for nuisance regressors # create mean img img_size = (img.shape[0], img.shape[1], img.shape[2]) mean_img = nb.Nifti1Image(np.reshape(data_mean, img_size), img.affine) mx = [] for idx, col in enumerate(df.columns): if not 'drift' in col and not constant in col: con_vector = np.zeros((1, df.shape[1])) con_vector[0, idx] = 1 con = results.Tcontrast(con_vector) mx.append(np.max(np.absolute([con.t.min(), con.t.max()]))) mx = .8 * np.max(mx) t_png = 'Tstat_' for idx, col in enumerate(df.columns): if not 'drift' in col and not constant in col: con_vector = np.zeros((1, df.shape[1])) con_vector[0, idx] = 1 con = results.Tcontrast(con_vector) print(con_vector) m_img = nb.Nifti1Image(np.reshape(con, img_size), img.affine) title_str = col + ' Tstat map ' print(title_str) fig = plotting.plot_stat_map(m_img, mean_img, threshold=3, colorbar=True, display_mode='z', vmax=mx, title=title_str, cut_coords=7) fig.savefig(pjoin(out_figure_path, t_png + col + png_append)) plt.close() del fig # Display R-sq map for nuisance regressors m_img = nb.Nifti1Image(np.reshape(rsquare, img_size), img.affine) title_str = 'Nuisance Rsq map ' print(title_str) mx = .95 * rsquare.max() fig = plotting.plot_stat_map(m_img, mean_img, threshold=.2, colorbar=True, display_mode='z', vmax=mx, title=title_str, cut_coords=7) fig.savefig(pjoin(out_figure_path, 'Rsquared' + png_append)) plt.close() del fig