flattening, and a surface-based coordinate system. Neuroimage 9. http://dx.doi.org/10.1006/nimg.1998.0396 Destrieux et al, (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53, 1. URL http://dx.doi.org/10.1016/j.neuroimage.2010.06.010. """ ############################################################################### # Retrieving the data # ------------------- # NKI resting state data from nilearn from nilearn import datasets nki_dataset = datasets.fetch_surf_nki_enhanced(n_subjects=1) # The nki dictionary contains file names for the data # of all downloaded subjects. print(('Resting state data of the first subjects on the ' 'fsaverag5 surface left hemisphere is at: %s' % nki_dataset['func_left'][0])) # Destrieux parcellation for left hemisphere in fsaverage5 space destrieux_atlas = datasets.fetch_atlas_surf_destrieux() parcellation = destrieux_atlas['map_left'] labels = destrieux_atlas['labels'] # Fsaverage5 surface template fsaverage = datasets.fetch_surf_fsaverage()
""" try: from nilearn import datasets from nilearn import surface except ImportError: raise ImportError( "You must have nilearn installed to run this example." ) import numpy as np import napari # Fetch datasets - this will download dataset if datasets are not found nki_dataset = datasets.fetch_surf_nki_enhanced(n_subjects=1) fsaverage = datasets.fetch_surf_fsaverage() # Load surface data and resting state time series from nilearn brain_vertices, brain_faces = surface.load_surf_data(fsaverage['pial_left']) brain_vertex_depth = surface.load_surf_data(fsaverage['sulc_left']) timeseries = surface.load_surf_data(nki_dataset['func_left'][0]) # nilearn provides data as n_vertices x n_timepoints, but napari requires the # vertices axis to be placed last to match NumPy broadcasting rules timeseries = timeseries.transpose((1, 0)) with napari.gui_qt(): # create an empty viewer viewer = napari.Viewer(ndisplay=3) # add the mri