예제 #1
0
def extract_data(images, masks):
    """ given a set of brain images and a set of masks,  extract the average signal inside each mask for each brain image.
        Returns a dataframe with 3 columns: image, mask, value.
    """

    masker = NiftiMapsMasker(masks)
    values = masker.fit_transform(images)
    nimgs, nmasks = values.shape

    cp = op.commonpath(images)
    labelsimages = [i.replace(cp, '') for i in images]
    print(cp)
    print(labelsimages)

    cpmask = op.commonprefix(masks)
    labelsrois = [i.replace(cpmask, '').replace('.nii.gz', '') for i in masks]
    print(cpmask)
    print(labelsrois)

    df = pd.DataFrame(columns=['image', 'mask', 'value'])
    row = 0
    for iimg in range(nimgs):
        for iroi in range(nmasks):
            df.loc[row] = pd.Series({
                'image': labelsimages[iimg],
                'mask': labelsrois[iroi],
                'value': values[iimg, iroi]
            })
            row = row + 1
    return df
예제 #2
0
def extract_from_masker(dataset_like,dataset_mask, funci, timer =True):
  tic = time.clock()



  maps_img = dict_to_list(dataset_like)
  #add mask, smoothing, filter and detrending
  print 'Nifti'
  masker = NiftiMapsMasker(maps_img=maps_img,
			  mask_img = dataset_mask,
			  low_pass = .1,
			  high_pass = .01,
			  smoothing_fwhm =6.,
			  t_r = 1.05,
			  detrend = True,
			  standardize = False,
			  resampling_target ='data',
			  memory_level = 0,
			  verbose=5)

  #extract signal to x
  print 'masker'
  x = masker.fit_transform(funci)
  if timer:
    print time.clock() - tic
  return x
예제 #3
0
def extract_rois_signals(preprocessing_folder ='pipeline_2', prefix= 'resampled_wr'):
    dataset = load_dynacomp(preprocessing_folder = preprocessing_folder,prefix = prefix)
    for idx, func in enumerate([dataset.func1, dataset.func2]):
      for i in range(len(dataset.subjects)):
	tic = time.clock()
	print func[i]
	output_path, _ = os.path.split(func[i])
	print dataset.subjects[i]
	maps_img = dict_to_list(dataset.rois[i])
	#add mask, smoothing, filter and detrending
	print 'Nifti'
	masker = NiftiMapsMasker(maps_img=maps_img,
				mask_img = dataset.mask,
				low_pass = .1,
				high_pass = .01,
				smoothing_fwhm =6.,
				t_r = 1.05,
				detrend = True,
				standardize = False,
				resampling_target ='data',
				memory_level = 0,
				verbose=5)
	
	#extract signal to x
	print 'masker'
	x = masker.fit_transform(func[i])
	print x
	np.save(os.path.join(PATH_TO_SAVE_DATA,'output' + str(i+1) +'_rois_filter'),x)
	
      print time.clock() - tic
      
      return x
예제 #4
0
def extract_one_signal(dataset):
    for idx, func in enumerate([dataset.func1, dataset.func2]):
      for i in range(len(dataset.subjects)):
	tic = time.clock()



	#maps_img = dict_to_list(func)
	#add mask, smoothing, filter and detrending
	maps_img = dict_to_list(dataset.rois[i])
	masker = NiftiMapsMasker(maps_img=maps_img,
				mask_img = dataset.mask,
				low_pass = .1,
				high_pass = .01,
				smoothing_fwhm =6.,
				t_r = 1.05,
				detrend = True,
				standardize = False,
				resampling_target ='data',
				memory_level = 0,
				verbose=5)
	
	#extract signal to x
	x = masker.fit_transform(func[i])
	
	print "loading time : "+ str(time.clock() - tic)
	return x,maps_img
예제 #5
0
파일: utils.py 프로젝트: MartinPerez/unicog
def get_data_in_roi(path_roi, data_file):
    """Using of the NiftiMapsMasker """
    masker = NiftiMapsMasker([path_roi])
    array_datas = np.zeros((len(data_file), 177))
    for e, d in enumerate(data_file):
        nifti_obj = nibabel.load(d)
        data = masker.fit_transform(d)
        array_datas[e-1] = data.ravel()
    return array_datas
예제 #6
0
def get_data_in_roi(path_roi, data_file):
    """Using of the NiftiMapsMasker """
    masker = NiftiMapsMasker([path_roi])
    array_datas = np.zeros((len(data_file), 177))
    for e, d in enumerate(data_file):
        nifti_obj = nibabel.load(d)
        data = masker.fit_transform(d)
        array_datas[e - 1] = data.ravel()
    return array_datas
예제 #7
0
def extract_parcellation_time_series(in_data, parcellation_name,
                                     parcellations_dict, bp_freqs, tr):
    '''
    Depending on parcellation['is_probabilistic'] this function chooses either NiftiLabelsMasker or NiftiMapsMasker
    to extract the time series of each parcel
    if bp_freq: data is band passfiltered at (hp, lp), if (None,None): no filter, if (None, .1) only lp...
    tr in ms (e.g. from freesurfer ImageInfo())
    returns np.array with parcellation time series and saves this array also to parcellation_time_series_file, and
    path to pickled masker object
    '''
    from nilearn.input_data import NiftiLabelsMasker, NiftiMapsMasker, NiftiSpheresMasker
    import os, pickle
    import numpy as np

    if parcellations_dict[parcellation_name][
            'is_probabilistic'] == True:  # use probab. nilearn
        masker = NiftiMapsMasker(
            maps_img=parcellations_dict[parcellation_name]['nii_path'],
            standardize=True)

    elif parcellations_dict[parcellation_name]['is_probabilistic'] == 'sphere':
        atlas = pickle.load(
            open(parcellations_dict[parcellation_name]['nii_path']))
        coords = atlas.rois
        masker = NiftiSpheresMasker(coords,
                                    radius=5,
                                    allow_overlap=True,
                                    standardize=True)

    else:  # 0/1 labels
        masker = NiftiLabelsMasker(
            labels_img=parcellations_dict[parcellation_name]['nii_path'],
            standardize=True)

    # add bandpass filter (only executes if freq not None
    hp, lp = bp_freqs
    masker.low_pass = lp
    masker.high_pass = hp
    if tr is not None:
        masker.t_r = tr
    else:
        masker.t_r = None

    masker.standardize = True

    masker_file = os.path.join(os.getcwd(), 'masker.pkl')
    with open(masker_file, 'w') as f:
        pickle.dump(masker, f)

    parcellation_time_series = masker.fit_transform(in_data)

    parcellation_time_series_file = os.path.join(
        os.getcwd(), 'parcellation_time_series.npy')
    np.save(parcellation_time_series_file, parcellation_time_series)

    return parcellation_time_series, parcellation_time_series_file, masker_file
예제 #8
0
def extract_timeseries_probabilistic(filename, maps, confounds=None):
    """Because the power parcellation is given in coordinates and not labels,
    we dedicate an exclusive function to deal with it.
    """
    maps_masker = NiftiMapsMasker(maps,
                                  resampling_target="data",
                                  standardize=True)

    time_series = maps_masker.fit_transform(filename, confounds=confounds)
    return time_series
예제 #9
0
def test_nifti_maps_masker_report_image_in_fit(niftimapsmasker_inputs):
    """"""
    masker = NiftiMapsMasker(**niftimapsmasker_inputs)
    image, _ = generate_random_img((13, 11, 12), affine=np.eye(4), length=3)
    masker.fit(image)
    html = masker.generate_report(2)
    assert masker._report_content['report_id'] == 0
    assert masker._report_content['number_of_maps'] == 9
    assert masker._report_content['warning_message'] is None
    assert html.body.count("<img") == 2
예제 #10
0
파일: mixture.py 프로젝트: mengsenz/dyneusr
def spatial_correlations(mm, atlas=None):
    if atlas is None:
        from nilearn.datasets import fetch_atlas_msdl
        atlas = fetch_atlas_msdl()
    from nilearn.input_data import NiftiMapsMasker
    masker = NiftiMapsMasker(maps_img=atlas['maps'])
    rsns_masked = masker.fit_transform(atlas['maps'])
    mm_masked = masker.fit_transform([mm])
    cc = np.corrcoef(mm_masked, rsns_masked)
    return cc
def run_mini_pipeline():
    atlas = datasets.fetch_atlas_msdl()
    atlas_img = atlas['maps']
    labels = pd.read_csv(atlas['labels'])['name']

    masker = NiftiMapsMasker(maps_img=atlas_img, standardize=True,
                               memory='/tmp/nilearn', verbose=0)

    data = datasets.fetch_adhd(number_subjects)

    figures_folder = '../figures/'
    count=0
    for func_file, confound_file in zip(data.func, data.confounds):
        
        # fit the data to the atlas mask, regress out confounds
        time_series = masker.fit_transform(func_file, confounds=confound_file)

        correlation = np.corrcoef(time_series.T)

        #plotting starts here
        plt.figure(figsize=(10, 10))
        plt.imshow(correlation, interpolation="nearest")
        x_ticks = plt.xticks(range(len(labels)), labels, rotation=90)
        y_ticks = plt.yticks(range(len(labels)), labels)
        corr_file = figures_folder+'subject_number_' + str(count) + '_correlation.pdf'
        plt.savefig(corr_file)

        atlas_region_coords = [plotting.find_xyz_cut_coords(img) for img in image.iter_img(atlas_img)]
        threshold = 0.6
        plotting.plot_connectome(correlation, atlas_region_coords, edge_threshold=threshold)
        connectome_file = figures_folder+'subject_number_' + str(count) + '_connectome.pdf'
        plt.savefig(connectome_file)


        #graph setup

        #binarize correlation matrix
        correlation[correlation<threshold] = 0
        correlation[correlation != 0] = 1

        graph = nx.from_numpy_matrix(correlation)

        partition=louvain.best_partition(graph)

        values = [partition.get(node) for node in graph.nodes()]

        plt.figure()
        nx.draw_spring(graph, cmap = plt.get_cmap('jet'), node_color = values, node_size=30, with_labels=True)
        graph_file = figures_folder+'subject_number_' + str(count) + '_community.pdf'
        plt.savefig(graph_file)

        count += 1

        plt.close('all')
예제 #12
0
파일: utils.py 프로젝트: MartinPerez/unicog
def get_data_in_rois_method2(ROIs, subjects, contrasts, condir, localizerf, threshold):
    """ returns, for individual subjects, the average contrasts values  in ROIs masked by individual localizers,
    thresholded at a fixed theshold"""
    values = np.zeros((len(subjects), len(contrasts), len(ROIs)))
    for isub, sub in enumerate(subjects):
        conlist = [op.join(sub, condir, x) for x in contrasts]
        localizer_img = nibabel.load(op.join(sub, localizerf))
        locmask = binarize_img(localizer_img, threshold)
        masker = NiftiMapsMasker(ROIs, locmask)
        values[isub, :] = masker.fit_transform(conlist)
    return values
예제 #13
0
파일: utils.py 프로젝트: bgauthie/unicog
def get_data_in_rois_method2(ROIs, subjects, contrasts, condir, localizerf,
                             threshold):
    """ returns, for individual subjects, the average contrasts values  in ROIs masked by individual localizers,
    thresholded at a fixed theshold"""
    values = np.zeros((len(subjects), len(contrasts), len(ROIs)))
    for isub, sub in enumerate(subjects):
        conlist = [op.join(sub, condir, x) for x in contrasts]
        localizer_img = nibabel.load(op.join(sub, localizerf))
        locmask = binarize_img(localizer_img, threshold)
        masker = NiftiMapsMasker(ROIs, locmask)
        values[isub, :] = masker.fit_transform(conlist)
    return values
예제 #14
0
파일: utils.py 프로젝트: MartinPerez/unicog
def get_data_in_rois_method1(ROIs, subjects, contrasts, condir):
    """ returns the average contratst in each ROI and for each subject """
    masker = NiftiMapsMasker(ROIs)
    print ROIs
    
    values = np.zeros((len(subjects), len(contrasts), len(ROIs)))
    for isub, sub in enumerate(subjects):
        conlist = [op.join(sub, condir, x) for x in contrasts]
        print conlist
        res = masker.fit_transform(conlist)
        values[isub, :] = masker.fit_transform(conlist)
        #print values
    return values
예제 #15
0
파일: utils.py 프로젝트: bgauthie/unicog
def get_data_in_rois_method1(ROIs, subjects, contrasts, condir):
    """ returns the average contratst in each ROI and for each subject """
    masker = NiftiMapsMasker(ROIs)
    print ROIs

    values = np.zeros((len(subjects), len(contrasts), len(ROIs)))
    for isub, sub in enumerate(subjects):
        conlist = [op.join(sub, condir, x) for x in contrasts]
        print conlist
        res = masker.fit_transform(conlist)
        values[isub, :] = masker.fit_transform(conlist)
        #print values
    return values
예제 #16
0
def test_nifti_maps_masker_report_list_and_arrays_maps_number(
        niftimapsmasker_inputs, displayed_maps):
    """Tests report generation for NiftiMapsMasker with displayed_maps
    passed as a list of a Numpy arrays.
    """
    masker = NiftiMapsMasker(**niftimapsmasker_inputs)
    masker.fit()
    html = masker.generate_report(displayed_maps)
    assert masker._report_content['report_id'] == 0
    assert masker._report_content['number_of_maps'] == 9
    assert (masker._report_content['displayed_maps'] == list(displayed_maps))
    msg = ("No image provided to fit in NiftiMapsMasker. "
           "Plotting only spatial maps for reporting.")
    assert masker._report_content['warning_message'] == msg
    assert html.body.count("<img") == len(displayed_maps)
예제 #17
0
def series_times_ROI(Maps, func, typeF):
    from nilearn.input_data import NiftiLabelsMasker, NiftiMapsMasker
    from nilearn import plotting
    import scipy.io as sio
    import numpy as np
    import os
    ##################################
    Resul = os.getcwd()  #+'-Results'
    n_map = Maps[Maps.rfind('/') + 1:][:Maps[Maps.rfind('/') + 1:].find('.')]
    n_plot = 'empty_plot'
    #os.system('mkdir '+Resul)
    ##################################
    if typeF == 'Labels':
        masker = NiftiLabelsMasker(labels_img=Maps, standardize=True)
        plot_atlas = plotting.plot_roi(Maps)
        n_plot = Resul + '/Atlas_' + n_map + '_' + typeF + '.svg'
        plot_atlas.savefig(n_plot)
    if typeF == 'Maps':
        masker = NiftiMapsMasker(maps_img=Maps,
                                 standardize=True,
                                 memory='nilearn_cache',
                                 verbose=5)

    time_series = masker.fit_transform(func)
    print('Shape of serial times ', np.shape(time_series))
    out_mat = Resul + '/Time_series_' + n_map + '_' + typeF + '.mat'
    sio.savemat(out_mat, {'time_series': time_series})

    return out_mat, n_plot
예제 #18
0
def compute_connectivity_subjects(func_list, atlas, mask, conn, n_jobs=-1):
    """ Returns connectivities for all subjects
    tril matrix n_subjects * n_rois_tril
    """
    if len(nib.load(atlas).shape) == 4:
        masker = NiftiMapsMasker(maps_img=atlas,
                                 mask_img=mask,
                                 detrend=True,
                                 low_pass=.1,
                                 high_pass=.01,
                                 t_r=3.,
                                 resampling_target='data',
                                 smoothing_fwhm=6,
                                 memory=CACHE_DIR,
                                 memory_level=2)
    else:
        masker = NiftiLabelsMasker(labels_img=atlas,
                                   mask_img=mask,
                                   t_r=3.,
                                   detrend=True,
                                   low_pass=.1,
                                   high_pass=.01,
                                   resampling_target='data',
                                   smoothing_fwhm=6,
                                   memory=CACHE_DIR,
                                   memory_level=2)

    p = Parallel(n_jobs=n_jobs, verbose=5)(delayed(
                 compute_connectivity_subject)(conn, func, masker)\
                 for func in func_list)
    return np.asarray(p)
def getConnectome(imgPath=None,
                  atlasPath=None,
                  viewInBrowser=False,
                  displayCovMatrix=False):
    """
    Gets the connectome of a functional MRI scan
    imgPath -> absolute or relative path to the .nii file
    atlasPath -> download path for the reference MSDL atlas
    viewInBrowser (optional, default=False) -> if True, opens up an interactive viewer in the browser
    displayCovMatrix (optional, default=False) -> display the inverse covariance matrix
    Returns a tuple of shape (estimator, atlas)
    """
    # Download the reference atlas
    atlas = datasets.fetch_atlas_msdl(data_dir=atlasPath)
    # Loading atlas image stored in 'maps'
    atlasFilename = atlas['maps']
    # Get the time series for the fMRI scan
    masker = NiftiMapsMasker(maps_img=atlasFilename,
                             standardize=True,
                             memory='nilearn_cache',
                             verbose=5)
    timeSeries = masker.fit_transform(imgPath)
    # Compute the connectome using sparse inverse covariance
    estimator = GraphicalLassoCV()
    estimator.fit(timeSeries)
    if (displayCovMatrix):
        labels = atlas['labels']
        plotting.plot_matrix(estimator.covariance_,
                             labels=labels,
                             figure=(9, 7),
                             vmax=1,
                             vmin=-1,
                             title='Covariance')
        plotting.plot_matrix(estimator.precision_,
                             labels=labels,
                             figure=(9, 7),
                             vmax=1,
                             vmin=-1,
                             title='Inverse covariance (Precision)')
        #covPlot.get_figure().savefig('Covariance.png')
        # precPlot.get_figure().savefig('Inverse Covariance.png')
    if (viewInBrowser):
        coords = atlas.region_coords
        view = plotting.view_connectome(-estimator.precision_, coords, '60.0%')
        #view.save_as_html(file_name='Connectome Test.html')
        view.open_in_browser()
    return (estimator, atlas)
예제 #20
0
def get_data(subj, mask, sessions=None, dtype='jacobian'):
    """
    Parameters
    ----------
    subj : (N,) list of img_like
    mask : Niimg_like
    sessions : list of str


    Returns
    -------
    data : (N x M) np.ndarray
        Data extracted from ``imgs``, where ``M`` is the number of parcels in
        ``mask``
    """

    # check mask is correct
    if not isinstance(mask, BaseMasker):
        if not isinstance(mask, str):
            raise ValueError('Mask must be a mask object or filepath.')
        if 'probabilistic' in mask:
            mask = NiftiMapsMasker(mask, resampling_target='maps')
        else:
            mask = NiftiLabelsMasker(mask, resampling_target='labels')

    # only fit mask if it hasn't been fitted to save time
    if not hasattr(mask, 'maps_img_'):
        mask = mask.fit()

    # get images for supplied sessions (or all images)
    subj_dir = pjoin(DERIV_DIR, subj)
    if sessions is not None:
        imgs = list(
            itertools.chain.from_iterable(
                [glob.glob(pjoin(subj_dir, f'*_ses-{ses}_*_{dtype}.nii.gz'))
                 for ses in sorted(sessions)]
            )
        )
    else:
        imgs = sorted(glob.glob(pjoin(subj_dir, '*{dtype}.nii.gz')))

    # extract subject / session information from data (BIDS format)
    demo = np.row_stack([REGEX.findall(i) for i in imgs])
    # fit mask to data and stack across sessions
    data = np.row_stack([mask.transform(check_niimg(img, atleast_4d=True))
                         for img in imgs])
    return data, demo
예제 #21
0
def _fmri_roi_extract_image(data,  atlas_path, atlas_type, radius, overlap_ok,mask = None):
    if 'label' in atlas_type:
        logging.debug('Labels Extract')
        label_masker = NiftiLabelsMasker(atlas_path, mask_img=mask)
        timeseries = label_masker.fit_transform(data)
    if 'sphere' in atlas_type:
        atlas_path = np.loadtxt(atlas_path)
        logging.debug('Sphere Extract')
        spheres_masker = NiftiSpheresMasker(atlas_path, float(radius),mask_img=mask, allow_overlap = overlap_ok)
        timeseries = spheres_masker.fit_transform(data)
    if 'maps' in atlas_type:
        logging.debug('Maps Extract')
        maps_masker = NiftiMapsMasker(atlas_path,mask_img=mask, allow_overlap = overlap_ok)
        timeseries = maps_masker.fit_transform(data)
    timeseries[timeseries == 0.0] = np.nan

    return timeseries
예제 #22
0
def cal_connectome(fmri_ff,
                   confound_ff,
                   atlas_ff,
                   outputjpg_ff,
                   metric='correlation',
                   labelrange=None,
                   label_or_map=0):
    if label_or_map == 0:
        # “correlation”, “partial correlation”, “tangent”, “covariance”, “precision”
        masker = NiftiLabelsMasker(labels_img=atlas_ff,
                                   standardize=True,
                                   verbose=0)
    else:
        masker = NiftiMapsMasker(maps_img=atlas_ff,
                                 standardize=True,
                                 verbose=0)

    time_series_0 = masker.fit_transform(fmri_ff, confounds=confound_ff)
    if labelrange is None:
        labelrange = np.arange(time_series_0.shape[1])
    time_series = time_series_0[:, labelrange]
    if metric == 'sparse inverse covariance':
        try:
            estimator = GraphLassoCV()
            estimator.fit(time_series)
            correlation_matrix = -estimator.precision_
        except:
            correlation_matrix = np.zeros(
                (time_series.shape[1], time_series.shape[1]))
    else:
        correlation_measure = ConnectivityMeasure(kind=metric)
        correlation_matrix = correlation_measure.fit_transform([time_series
                                                                ])[0]

    # Plot the correlation matrix

    fig = plt.figure(figsize=(6, 5), dpi=100)
    plt.clf()
    # Mask the main diagonal for visualization:
    np.fill_diagonal(correlation_matrix, 0)

    plt.imshow(correlation_matrix,
               interpolation="nearest",
               cmap="RdBu_r",
               vmax=0.8,
               vmin=-0.8)
    plt.gca().yaxis.tick_right()
    plt.axis('off')
    plt.colorbar()
    plt.title(metric.title(), fontsize=12)
    plt.tight_layout()
    fig.savefig(outputjpg_ff, bbox_inches='tight')
    plt.close()
    return correlation_matrix
예제 #23
0
파일: utils.py 프로젝트: fliem/LeiCA_LIFE
def extract_parcellation_time_series(in_data, parcellation_name, parcellations_dict, bp_freqs, tr):
    '''
    Depending on parcellation['is_probabilistic'] this function chooses either NiftiLabelsMasker or NiftiMapsMasker
    to extract the time series of each parcel
    if bp_freq: data is band passfiltered at (hp, lp), if (None,None): no filter, if (None, .1) only lp...
    tr in ms (e.g. from freesurfer ImageInfo())
    returns np.array with parcellation time series and saves this array also to parcellation_time_series_file, and
    path to pickled masker object
    '''
    from nilearn.input_data import NiftiLabelsMasker, NiftiMapsMasker, NiftiSpheresMasker
    import os, pickle
    import numpy as np

    if parcellations_dict[parcellation_name]['is_probabilistic'] == True:  # use probab. nilearn
        masker = NiftiMapsMasker(maps_img=parcellations_dict[parcellation_name]['nii_path'], standardize=True)

    elif parcellations_dict[parcellation_name]['is_probabilistic'] == 'sphere':
        atlas = pickle.load(open(parcellations_dict[parcellation_name]['nii_path']))
        coords = atlas.rois
        masker = NiftiSpheresMasker(coords, radius=5, allow_overlap=True, standardize=True)

    else:  # 0/1 labels
        masker = NiftiLabelsMasker(labels_img=parcellations_dict[parcellation_name]['nii_path'],
                                   standardize=True)

    # add bandpass filter (only executes if freq not None
    hp, lp = bp_freqs
    masker.low_pass = lp
    masker.high_pass = hp
    if tr is not None:
        masker.t_r = tr
    else:
        masker.t_r = None

    masker.standardize = True

    masker_file = os.path.join(os.getcwd(), 'masker.pkl')
    with open(masker_file, 'w') as f:
        pickle.dump(masker, f)

    parcellation_time_series = masker.fit_transform(in_data)

    parcellation_time_series_file = os.path.join(os.getcwd(), 'parcellation_time_series.npy')
    np.save(parcellation_time_series_file, parcellation_time_series)

    return parcellation_time_series, parcellation_time_series_file, masker_file
예제 #24
0
def _set_volume_masker(roi_file, as_voxels=False, **kwargs):
    """Check and see if multiple ROIs exist in atlas file"""

    if not isinstance(roi_file, str):
        raise ValueError('roi_file must be a file name string')

    if roi_file.endswith('.csv') or roi_file.endswith('.tsv'):
        roi = _read_coords(roi_file)
        n_rois = len(roi)
        print('  {} region(s) detected from coordinates'.format(n_rois))

        if kwargs.get('radius') is None:
            warnings.warn('No radius specified for coordinates; setting '
                          'to nilearn.input_data.NiftiSphereMasker default '
                          'of extracting from a single voxel')
        masker = NiftiSpheresMasker(roi, **kwargs)
    
    elif roi_file.endswith('.nii.gz'):
        # remove args for NiftiSpheresMasker 
        if 'radius' in kwargs:
            kwargs.pop('radius')
        if 'allow_overlap' in kwargs:
                kwargs.pop('allow_overlap')
    
        roi_img = image.load_img(roi_file)
        if len(roi_img.shape) == 4:
            n_rois = roi_img.shape[-1]
            print('  {} region(s) detected from {}'.format(n_rois,
                                                        roi_img.get_filename()))
            masker = NiftiMapsMasker(roi_img, allow_overlap=True,**kwargs)
        else:
            n_rois = len(np.unique(roi_img.get_fdata())) - 1
            print('  {} region(s) detected from {}'.format(n_rois,
                                                        roi_img.get_filename()))
            if n_rois > 1:
                masker = NiftiLabelsMasker(roi_img, **kwargs)
            elif n_rois == 1:
                # binary mask for single ROI 
                if as_voxels:
                    if 'mask_img' in kwargs:
                        kwargs.pop('mask_img')
                    masker = NiftiMasker(roi_img, **kwargs)
                else:
                    # more computationally efficient if only wanting the mean
                    masker = NiftiLabelsMasker(roi_img, **kwargs)
            else:
                raise ValueError('No ROI detected; check ROI file')
    
    else:
        raise ValueError('Invalid file type for roi_file. Must be one of: '
                         '.nii.gz, .csv, .tsv')
    
    return masker, n_rois
 def __init__(self,
              atlas_name,
              metric,
              mask,
              detrend=True,
              low_pass=.1,
              high_pass=.01,
              t_r=3.,
              resampling_target='data',
              smoothing_fwhm=6.,
              memory='',
              memory_level=2,
              n_jobs=1):
     """ - Setting attributes
         - Preparing maskers
     """
     self.atlas = fetch_atlas(atlas_name)
     self.metric = metric
     self.mask = mask
     self.n_jobs = n_jobs
     self.masker_vox = NiftiMasker(mask_img=self.mask,
                                   detrend=detrend,
                                   low_pass=low_pass,
                                   high_pass=high_pass,
                                   t_r=t_r,
                                   smoothing_fwhm=smoothing_fwhm,
                                   memory=memory,
                                   memory_level=memory_level)
     if len(nib.load(self.atlas).shape) == 4:
         self.masker_ROI = NiftiMapsMasker(
             maps_img=self.atlas,
             mask_img=self.mask,
             detrend=detrend,
             low_pass=low_pass,
             high_pass=high_pass,
             t_r=t_r,
             resampling_target=resampling_target,
             smoothing_fwhm=smoothing_fwhm,
             memory=memory,
             memory_level=memory_level)
     else:
         self.masker_ROI = NiftiLabelsMasker(
             labels_img=self.atlas,
             mask_img=self.mask,
             detrend=detrend,
             low_pass=low_pass,
             high_pass=high_pass,
             t_r=t_r,
             resampling_target=resampling_target,
             smoothing_fwhm=smoothing_fwhm,
             memory=memory,
             memory_level=memory_level)
예제 #26
0
def signal_extract(data,atlas,t_r=2.2,masker_type='Spheres',saveas='file'):
    
    """
    Extracts BOLD time-series from regions of interest
    
    Parameters
    ----------
    data: Filenames of subjects. 
    
    atlas: regions or coordinates to extract signals from.
    
    masker_type : Type of masker used to extract BOLD signals . types are : 'Spheres','Maps','Labels'
    
    saveas : Destination to save and load output (.npz)
    
    Returns
    ---------
    subject_ts : array-like , 2-D (n_subjects,n_regions)
                 Array of BOLD time-series 
    """
    subjects_ts=[]
    
    if os.path.exists(saveas):
        
        subjects_ts=np.load(saveas)['arr_0']
        
    else:
        
        if masker_type== 'Spheres':
            masker = NiftiSpheresMasker(
                            seeds=atlas, smoothing_fwhm=6, radius=4 ,mask_img=brainmask,
                            detrend=False, standardize=True, low_pass=0.1, high_pass=0.01, t_r=t_r)
        elif masker_type == 'Maps':
            masker = NiftiMapsMasker(maps_img=atlas,mask_img=brainmask,standardize=True,
                                 high_pass=0.01,low_pass=0.1,detrend=False,t_r=t_r,
                                 memory_level=2,smoothing_fwhm=5,resampling_target='data',
                                 memory=mem,verbose=5)
        elif masker_type == 'Labels':
            masker = NiftiLabelsMasker(labels_img=atlas,mask_img=brainmask,standardize=True,
                                 high_pass=0.01,low_pass=0.1,detrend=False,t_r=t_r,
                                 memory_level=2,smoothing_fwhm=5,resampling_target='data',
                                 memory=mem,verbose=5)
        else:
            raise ValueError("Please provide masker type")
            
        for func_file in data:
            time_series = masker.fit_transform(func_file)
            subjects_ts.append(time_series)
            np.savez(saveas,subjects_ts)
            
    return subjects_ts
예제 #27
0
def test_nifti_maps_masker_report_displayed_maps_errors(
        niftimapsmasker_inputs, displayed_maps):
    """Tests that a TypeError is raised when the argument `displayed_maps`
    of `generate_report()` is not valid.
    """
    masker = NiftiMapsMasker(**niftimapsmasker_inputs)
    masker.fit()
    with pytest.raises(TypeError, match=("Parameter ``displayed_maps``")):
        masker.generate_report(displayed_maps)
예제 #28
0
def test_nifti_maps_masker_report_maps_number_errors(niftimapsmasker_inputs,
                                                     displayed_maps):
    """Tests that a ValueError is raised when the argument `displayed_maps`
    contains invalid map numbers.
    """
    masker = NiftiMapsMasker(**niftimapsmasker_inputs)
    masker.fit()
    with pytest.raises(ValueError,
                       match="Report cannot display the following maps"):
        masker.generate_report(displayed_maps)
def main(argv):
## atlas 3
    atlas = "Schaefer200Yeo17Pauli" # msdl or haox or mmp
    schaefer_atlas = datasets.fetch_atlas_schaefer_2018(n_rois=200, yeo_networks=17, resolution_mm=1, data_dir=None, base_url=None, resume=True, verbose=1) #atlas_filename = "MMP1_rois.nii" #Glasser et al., 2016
    schaefer_filename = schaefer_atlas.maps
    schaefer_labels = schaefer_atlas.labels
    schaefer_masker = NiftiLabelsMasker(labels_img=schaefer_filename, standardize=True,
                               memory='nilearn_cache', verbose=5) 
    pauli_atlas = datasets.fetch_atlas_pauli_2017()
    pauli_filename = pauli_atlas.maps
    pauli_labels = pauli_atlas.labels
    pauli_masker = NiftiMapsMasker(maps_img=pauli_filename, standardize=True, verbose=5) 
    
    all_labels = np.hstack([schaefer_labels, pauli_labels])
    #print(all_labels)
    
    correlation_measure = ConnectivityMeasure(kind='correlation')
예제 #30
0
    def __init__(self,
                 atlas_name,
                 metric,
                 mask,
                 rois=False,
                 detrend=True,
                 low_pass=.1,
                 high_pass=.01,
                 t_r=3.,
                 resampling_target='data',
                 smoothing_fwhm=6.,
                 memory='',
                 memory_level=2,
                 n_jobs=1):

        self.fc_ = None
        self.atlas, self.rois = fetch_atlas(atlas_name, rois)
        self.metric = metric
        self.mask = mask
        self.n_jobs = n_jobs
        if len(nii_shape(self.atlas)) == 4:
            self.masker = NiftiMapsMasker(maps_img=self.atlas,
                                          mask_img=self.mask,
                                          detrend=detrend,
                                          low_pass=low_pass,
                                          high_pass=high_pass,
                                          t_r=t_r,
                                          resampling_target=resampling_target,
                                          smoothing_fwhm=smoothing_fwhm,
                                          memory=memory,
                                          memory_level=memory_level,
                                          verbose=5)
        else:
            self.masker = NiftiLabelsMasker(
                labels_img=self.atlas,
                mask_img=self.mask,
                detrend=detrend,
                low_pass=low_pass,
                high_pass=high_pass,
                t_r=t_r,
                resampling_target=resampling_target,
                smoothing_fwhm=smoothing_fwhm,
                memory=memory,
                memory_level=memory_level,
                verbose=5)
 def __init__(self,
              atlas_name,
              rois,
              metric,
              mask,
              detrend=True,
              low_pass=.1,
              high_pass=.01,
              t_r=3.,
              resampling_target='data',
              smoothing_fwhm=6.,
              memory='',
              memory_level=2,
              n_jobs=1):
     self.atlas = fetch_atlas(atlas_name)
     self.rois = np.asarray(rois)
     self.metric = metric
     self.mask = mask
     self.n_jobs = n_jobs
     if len(nib.load(self.atlas).shape) == 4:
         self.masker = NiftiMapsMasker(maps_img=self.atlas,
                                       mask_img=self.mask,
                                       detrend=detrend,
                                       low_pass=low_pass,
                                       high_pass=high_pass,
                                       t_r=t_r,
                                       resampling_target=resampling_target,
                                       smoothing_fwhm=smoothing_fwhm,
                                       memory=memory,
                                       memory_level=memory_level)
     else:
         self.masker = NiftiLabelsMasker(
             labels_img=self.atlas,
             mask_img=self.mask,
             detrend=detrend,
             low_pass=low_pass,
             high_pass=high_pass,
             t_r=t_r,
             resampling_target=resampling_target,
             smoothing_fwhm=smoothing_fwhm,
             memory=memory,
             memory_level=memory_level)
예제 #32
0
def get_loader_pipe(parc,
                    pipe='elastic_pipe',
                    obj_params=None,
                    **loader_params):
    '''TODO write doc  -  then add to docs.'''

    from ..main.funcs import pipeline_check
    from ..main.input import Loader

    if obj_params is None:
        obj_params = {}

    try:
        from neurotools.transform import SurfLabels, SurfMaps
        from neurotools.loading import load
        from nilearn.input_data import NiftiLabelsMasker, NiftiMapsMasker
    except ImportError:
        raise ImportError('neurotools must be installed!')

    # Apply pipeline check
    pipe = pipeline_check(pipe)

    # Get dimensionality of parcellation
    parc_dims = len(load(parc).shape)

    # Get correct object based off
    if parc_dims == 1:
        obj = SurfLabels(labels=parc, **obj_params)
    elif parc_dims == 2:
        obj = SurfMaps(maps=parc, **obj_params)
    elif parc_dims == 3:
        obj = NiftiLabelsMasker(labels_img=parc, **obj_params)
    elif parc_dims == 4:
        obj = NiftiMapsMasker(maps_img=parc, **obj_params)

    # Init loader from object
    loader = Loader(obj, **loader_params)

    # Add loader before rest of steps
    pipe.steps = [loader] + pipe.steps

    return pipe
예제 #33
0
def make_masker_from_atlas(atlas, memory=None, memory_level=1):
    """Construct a maker from a given atlas.

    Parameters
    ----------
    atlas : str or 3D/4D Niimg-like object,
        The atlas to use to create the masker. If string, it should corresponds
        to the path of a Nifti image.

    memory : instance of joblib.Memory or string, (default=None)
        Used to cache the masking process. By default, no caching is done. If a
        string is given, it is the path to the caching directory.

    memory_level : integer, optional (default=1)
        Rough estimator of the amount of memory used by caching. Higher value
        means more memory for caching.

    Returns
    -------
    masker : Nilearn Masker
        Nilearn Masker.

    """

    atlas_ = check_niimg(atlas)
    atlas_dim = len(atlas_.shape)
    if atlas_dim == 3:
        masker = NiftiLabelsMasker(atlas_,
                                   memory=memory,
                                   memory_level=memory_level,
                                   smoothing_fwhm=6,
                                   detrend=True,
                                   verbose=1)
    elif atlas_dim == 4:
        masker = NiftiMapsMasker(atlas_,
                                 memory=memory,
                                 memory_level=memory_level,
                                 smoothing_fwhm=6,
                                 detrend=True,
                                 verbose=1)

    return masker
예제 #34
0
def extract_parcellation_time_series(in_data, parcellation_name, parcellations_dict, bp_freqs, tr):
    """
    Depending on parcellation['is_probabilistic'] this function chooses either NiftiLabelsMasker or NiftiMapsMasker
    to extract the time series of each parcel
    if bp_freq: data is band passfiltered at (hp, lp), if (None,None): no filter, if (None, .1) only lp...
    tr in ms (e.g. from freesurfer ImageInfo())
    returns np.array with parcellation time series and saves this array also to parcellation_time_series_file, and
    path to pickled masker object
    """
    from nilearn.input_data import NiftiLabelsMasker, NiftiMapsMasker
    import os, pickle
    import numpy as np

    if parcellations_dict[parcellation_name]["is_probabilistic"]:  # use probab. nilearn
        masker = NiftiMapsMasker(maps_img=parcellations_dict[parcellation_name]["nii_path"])
    else:  # 0/1 labels
        masker = NiftiLabelsMasker(labels_img=parcellations_dict[parcellation_name]["nii_path"])

    # add bandpass filter (only executes if freq not None
    hp, lp = bp_freqs
    masker.low_pass = lp
    masker.high_pass = hp
    if tr is not None:
        masker.t_r = float(tr) / 1000.0
    else:
        masker.t_r = None

    masker.standardize = True

    masker_file = os.path.join(os.getcwd(), "masker.pkl")
    with open(masker_file, "w") as f:
        pickle.dump(masker, f)

    parcellation_time_series = masker.fit_transform(in_data)

    parcellation_time_series_file = os.path.join(os.getcwd(), "parcellation_time_series.npy")
    np.save(parcellation_time_series_file, parcellation_time_series)

    return parcellation_time_series, parcellation_time_series_file, masker_file
예제 #35
0
def test_nifti_maps_masker_report_integer_and_all_displayed_maps(
        niftimapsmasker_inputs, displayed_maps):
    """Tests NiftiMapsMasker reporting with no image provided to fit
    and displayed_maps provided as an integer or as 'all'.
    """
    masker = NiftiMapsMasker(**niftimapsmasker_inputs)
    masker.fit()
    expected_n_maps = 9 if displayed_maps == 'all' else min(9, displayed_maps)
    if displayed_maps != 'all' and displayed_maps > 9:
        with pytest.warns(UserWarning, match="masker only has 9 maps."):
            html = masker.generate_report(displayed_maps)
    else:
        html = masker.generate_report(displayed_maps)
    assert masker._report_content['report_id'] == 0
    assert masker._report_content['number_of_maps'] == 9
    assert (masker._report_content['displayed_maps'] == list(
        range(expected_n_maps)))
    msg = ("No image provided to fit in NiftiMapsMasker. "
           "Plotting only spatial maps for reporting.")
    assert masker._report_content['warning_message'] == msg
    assert html.body.count("<img") == expected_n_maps
예제 #36
0
atlas4d = nib.load(atlas['maps'])
atlas4d_data = atlas4d.get_data()
atlas3d_data = np.sum(atlas4d_data, axis=3)
atlas3d = nib.Nifti1Image(atlas3d_data, atlas4d.get_affine())

n_subjects = len(func_files)
subjects = []
cov_feat = []

for subject_n in range(n_subjects):
    filename = func_files[subject_n]
    print("Processing file %s" % filename)
    print("-- Computing region signals ...")
    masker = NiftiMapsMasker(atlas["maps"],
                             resampling_target="maps", standardize=False,
                             memory=CACHE_DIR, memory_level=1, verbose=0)
    region_ts = masker.fit_transform(filename)
    subjects.append(region_ts)
    print("-- Computing covariances")
    cov_matrix = np.cov(region_ts.T)
    cov_feat.append(cov_matrix[np.tril_indices(len(cov_matrix))])

from sklearn.svm import SVC
from sklearn.cross_validation import StratifiedShuffleSplit
    
cov_feat = np.array(cov_feat)

nb_iter = 100
pg_counter = 0
groups = [['AD', 'Normal'], ['AD', 'EMCI'], ['AD', 'LMCI'],
atlas = datasets.fetch_atlas_msdl()
# Loading atlas image stored in 'maps'
atlas_filename = atlas['maps']
# Loading atlas data stored in 'labels'
labels = atlas['labels']

# Load the functional datasets
data = datasets.fetch_adhd(n_subjects=1)

print('First subject resting-state nifti image (4D) is located at: %s' %
      data.func[0])

############################################################################
# Extract the time series
from nilearn.input_data import NiftiMapsMasker
masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True,
                         memory='nilearn_cache', verbose=5)

time_series = masker.fit_transform(data.func[0],
                                   confounds=data.confounds)

############################################################################
# `time_series` is now a 2D matrix, of shape (number of time points x
# number of regions)
print(time_series.shape)

############################################################################
# Build and display a correlation matrix
from nilearn.connectome import ConnectivityMeasure
correlation_measure = ConnectivityMeasure(kind='correlation')
correlation_matrix = correlation_measure.fit_transform([time_series])[0]
dyn_fc = []
for subject in dyn_dataset.subjects:
    dyn_fc.append(loader.load_dynacomp_fc(subject_id=subject, session='func1',
                                          metric='pc', msdl=False,
                                          preprocessing_folder='pipeline_1')[ind])
dyn_fc = np.asarray(dyn_fc)


##############################################################################
# NYU rs-fMRI
##############################################################################
nyu_func = fetch_nyu_rest()['func']
masker = NiftiMapsMasker(maps_img=roi_imgs, 
                         low_pass=.1,
                         high_pass=.01,
                         t_r=2.,
                         smoothing_fwhm=6., detrend=True, standardize=False,
                         resampling_target='maps', memory_level=0,
                         verbose=5)
masker.fit()

def mask_and_covariance(f):
    x = masker.transform(f)
    return np.corrcoef(x.T)[ind]
#    gl = GraphLassoCV(verbose=2)
#    gl.fit(x)
#    return gl.covariance_[ind]

from joblib import delayed, Parallel

nyu_fc = Parallel(n_jobs=20, verbose=5)(delayed(mask_and_covariance)(f)
import numpy as np
from loader import load_dynacomp
from nilearn.datasets import fetch_msdl_atlas
from nilearn.input_data import NiftiMapsMasker

dataset = load_dynacomp(preprocessing_folder='pipeline_2',
                        prefix='resampled_wr')
atlas = fetch_msdl_atlas()

# add mask, smoothing, filtering and detrending
masker = NiftiMapsMasker(maps_img=atlas['maps'],
                         mask_img=dataset.mask,
                         low_pass=.1,
                         high_pass=.01,
                         t_r=1.05,
                         smoothing_fwhm=6.,
                         detrend=True,
                         standardize=False,
                         resampling_target='data',
                         memory_level=0,
                         verbose=5)

for i in range(len(dataset.subjects)):
    tic = time.clock()
    output_path, _ = os.path.split(dataset.func1[i])
    if not os.path.isfile(os.path.join(output_path, 'func1_msdl_filter.npy')):
        print i, dataset.subjects[i]
        output_path, _ = os.path.split(dataset.func1[i])
        x = masker.fit_transform(dataset.func1[i])
        np.save(os.path.join(output_path, 'func1_msdl_filter') , x)
        x = masker.fit_transform(dataset.func2[i])
예제 #40
0
from nilearn.input_data import NiftiMapsMasker
from nilearn import datasets
import pandas as pd
import os

prepdir = "/oak/stanford/groups/russpold/data/ds000030/1.0.3/derivatives/fmriprep_0.4.4"
subs = [x for x in os.listdir(prepdir) if x.startswith('sub-') and not x.endswith(".html")]

atlas = datasets.fetch_atlas_msdl()
atlas_filename = atlas['maps']

outdir = os.path.join(os.environ.get("SCRATCH"),"CNP_ts")
if not os.path.exists(outdir):
    os.mkdir(outdir)

for sub in subs:
    subnum = float(sub.split("-")[1])
    outfile = os.path.join(outdir,"%s_MSDL.csv"%sub)
    if os.path.exists(outfile):
        continue
    preprocd = os.path.join(prepdir,sub,'func','%s_task-rest_bold_space-MNI152NLin2009cAsym_preproc.nii.gz'%sub)
    if not os.path.exists(preprocd):
        continue
    masker = NiftiMapsMasker(maps_img=atlas_filename, standardize=True,memory='nilearn_cache', verbose=5)
    time_series = masker.fit_transform(preprocd)
    ts = pd.DataFrame(time_series)
    ts.to_csv(outfile,index=False,header=False)
예제 #41
0
파일: extract.py 프로젝트: banilo/prni2016
    size_in_GB = all_sub_rs_maps.get_data().nbytes / 1e9

    print('% rs images: %.2f GB' % (cur_shape[-1], size_in_GB))

    ###############################################################################
    # dump network projections
    ###############################################################################

    # retrieve network projections
    from nilearn import datasets as ds
    smith_pkg = ds.fetch_atlas_smith_2009()
    icas_path = smith_pkg['rsn20']

    from nilearn.input_data import NiftiMapsMasker
    nmm = NiftiMapsMasker(
        mask_img=mask_file, maps_img=icas_path, resampling_target='mask',
        standardize=True, detrend=True)
    nmm.fit()
    nmm.maps_img_.to_filename('dbg_ica_maps.nii.gz')

    FS_netproj = nmm.transform(all_sub_rs_maps)
    np.save('%i_nets_timeseries' % sub_id, FS_netproj)

    # compute network sparse inverse covariance
    from sklearn.covariance import GraphLassoCV
    from nilearn.image import index_img
    from nilearn import plotting

    try:
        gsc_nets = GraphLassoCV(verbose=2, alphas=20)
        gsc_nets.fit(FS_netproj)
dataset = load_dynacomp(preprocessing_folder='pipeline_2',
                        prefix='resampled_wr')

# func1, func2
for idx, func in enumerate([dataset.func1, dataset.func2]):
    # all the subjects
    for i in range(len(dataset.subjects)):
        tic = time.clock()
        output_path, _ = os.path.split(func[i])
        print dataset.subjects[i]
        maps_img = dict_to_list(dataset.rois[i])
        # add mask, smoothing, filtering and detrending
        masker = NiftiMapsMasker(maps_img=maps_img,
                                 mask_img=dataset.mask,
                                 low_pass=.1,
                                 high_pass=.01,
                                 smoothing_fwhm=6.,
                                 t_r=1.05,
                                 detrend=True,
                                 standardize=False,
                                 resampling_target='data',
                                 memory_level=0,
                                 verbose=5)
        output_path, _ = os.path.split(func[i])
        # extract the signal to x
        x = masker.fit_transform(func[i])
        np.save(os.path.join(output_path,
                             'func' + str(idx+1) + '_rois_filter'), x)
        toc = time.clock()
        print toc - tic
Script to test functions

Created on Thu Mar 26 15:02:11 2015

@author: [email protected]
"""

from loader import load_dynacomp, list_of_dicts_to_key_list, dict_to_list
from nilearn.input_data import NiftiMapsMasker
import time

# Load Dynacomp dataset
dataset = load_dynacomp()

# Dataset keys
print 'keys\n', dataset.keys()

# Dataset functional 1
print 'func1\n', dataset.func1

# Dataset behaviordata : prePerf
print 'prePerf\n', list_of_dicts_to_key_list(dataset.behavior, 'prePerf')

# Generate seed-masker for subject 0
maps_img = dict_to_list(dataset.rois[1])

tic = time.clock()
masker = NiftiMapsMasker(maps_img, verbose=5)
x = masker.fit_transform(dataset.func1[1])
toc = time.clock()
print toc - tic
#    print('Warning: several func reference files: '+func_ref_file[0]+' will be used')
#func_ref = nb.load(func_ref_file[0])
#func_template = nibabel.load

display_atlas= nilearn.plotting.plot_prob_atlas(visu, anat_img=anat_ref_file[0],
                                                title=atlas_name+'_anat',
                                                cut_coords = (5,0,0),threshold=0.)


at_check =[plt.gcf()] #figure handle for atlas check



#masker for raw time series                              
masker_r = NiftiMapsMasker(atlas_filename, mask_img=mask, smoothing_fwhm=None,
                         standardize=stdz,detrend=detr, low_pass=None, 
                         high_pass=None,t_r=TR, resampling_target='data',
                         memory=mem_dir,memory_level=5, verbose=0) 

# prepare pairs for pairwise comparisons between groups   
comps = [] 
for func_index in range(len(func_type_list)-1) :
    if func_index != len(func_type_list)-func_index:    
        for i in range(func_index,len(func_type_list)-func_index):
            if i+1<len(func_type_list):                
                comps.append([func_type_list[func_index],func_type_list[i+1]])
    else:
        comps.append([func_type_list[func_index],func_type_list[func_index+1]])
Bonf = len(comps)


all_time_series_r = {} #regressed time series
예제 #45
0
파일: utils.py 프로젝트: MrFDA/unicog
def get_data_in_roi(path_roi, data_file):
    """Using of the NiftiMapsMasker """
    masker = NiftiMapsMasker([path_roi])
    nifti_obj = nibabel.load(data_file)
    data = masker.fit_transform(nifti_obj)
    return data