def predict(self, image): image = image*0.5 + 0.5 #rescale from [-1,1]-->[0,1] image = F.interpolate(image,size=(224,224),mode='bilinear') with torch.no_grad(): prob = self.model(image).data.cpu().numpy()[0] mean_score = get_mean_score(prob) std_score = get_std_score(prob) return mean_score+std_score
def predict(self, image): image = self.transform(image) image = image.unsqueeze_(0) image = torch.autograd.Variable(image, volatile=True) prob = self.model(image).data.numpy()[0] mean_score = get_mean_score(prob) std_score = get_std_score(prob) return format_output(mean_score, std_score, prob)
def predict(self, image): image = self.transform(image) image = image.unsqueeze_(0) image = image.to(device) prob = self.model(image).data.cpu().numpy()[0] mean_score = get_mean_score(prob) std_score = get_std_score(prob) return format_output(mean_score, std_score, prob)